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Outline

– Experiment Goals & Overview

– Summary of major results and/or critical experimental preparations to date 

– Experimental plans for the next year

– Summary of products delivered from the work to date (presentations, 

publications, other)

https://www.bnl.gov/atf/

• MeV ultrafast electron diffraction

(MUED)
• Autonomous identification of anomalous 

patterns (Preprocessing is key)

• Convolutional autoencoder for pattern 

reconstruction
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MeV ultrafast electron diffraction (MUED)

✓ Diffraction measurements made at 

time scales ~100 fs

✓ High scattering cross-section

✓ Extremely short wavelength 

(diffraction patterns contain many 

reflections)

✓ Reduced space charge effects (peak 

broadening and displacement)

✓ Less multiple scattering effects 

(structural reconstruction sometimes 

possible)

A powerful structural measurement technique for exploring time-resolved, ultrafast 

processes in different material systems.

Ta2NiSe5

2D material
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MeV ultrafast electron diffraction (MUED)

It is a powerful structural measurement technique for exploring time-resolved, 

ultrafast processes in different material systems.

Accelerator Test Facility (ATF @ BNL)

Beam energy 3 MeV

N e- per pulse 1.25 x 106

Temporal resolution 180 fs

Beam diameter 300 (100 best) µm

Max repetition rate 5 – 48 Hz

N e- per sec per µm2 88-880• Ti:Sapph pump (but OPA available, up to 9 μm)

• Liquid N2 or liquid He cooling

• **Strict sample requirements (electron transparent, lateral size > 300 nm)
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Why do we need machine learning for analysis?

➢ Due to instabilities in the electron beam, anomalous patterns are usually observed in single shot 

mode.

➢ These anomalies are integrated when accumulating several patterns (typically 70) and will be 

detrimental for the accuracy of the experiment.

➢ Some examples:

➢ The rate of anomalies is about 10% but can vary largely with experimental conditions (eg: 38% 

anomaly rate in a pump-probe experiment).

Ta2NiSe5
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Want to be able to find anomalous patterns in the large datasets with no user input (autonomous)

➢ Different types of anomalies and would like to also recognize unseen types.

➢ Limit analysis to Ta2NiSe5 as it is single crystal.

➢ The anomalies are under sampled, can’t employ a classification model.

o Developed a convolutional autoencoder model to reconstruct the diffraction patterns.

o Model trains on all data (unsupervised).

o An anomaly will have a large reconstruction error or different feature vector values.

o Tested different strategies to detect anomalies.

Autonomous anomaly detection
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For f(x) a discreet distribution of N samples that is normalized, define the inverse participation ratio (IPR) as:

For white noise, all frequencies contribute equally so f(x) has the same value for all x then:

Do the FFT of the tile, calculate the IPR and if it is equal to 1/N the tile is not included in the dataset for the 

autoencoder.

Preprocessing is key for good ML performance

Input: images of 512 x 512 pixels.

1. Split each image in 80 x 80 pixels tiles, using a sliding window with overlap.

2. Filter out the tiles that are background, devised a simple algorithm to decide if a tile contains white noise:
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Preprocessing is key for good ML performance

Ta2NiSe5
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Convolutional autoencoder for pattern reconstruction

➢ Each layer of the encoder: Conv2d with relu activation followed by MaxPool.

➢ MSE loss is used, model trained with 3789 diffraction patterns.

➢ Dataset is split 10-10-80 for test-validation-training.

Input Output

(reconstruction)
Feature vector

(256)

discretization process

categorize output of neural network
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Our autoencoder reproduces and denoises patterns

➢ The autoencoder performs very well and is trained in 100 epochs.

➢ It also served to denoised the images (which we plan to explore further)

Original Reconstruction Error
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➢ Recognizable features of anomalies are not well reconstructed:

Original Reconstruction Error

Our autoencoder performs poorly for anomalies



13

Input Output

(reconstruction)Feature vector

(256)

Anomaly detection: one-class support vector machine

➢ We implemented a one-class support vector machine with Gaussian kernel.

➢ We estimated the parameters in an unsupervised way.

However, we still have much to do:

➢ We want to use OCSVM in a probabilistic approach.

➢ We are having issues detecting a class of anomalies related to large energy variations.
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Input Output

(reconstruction)Feature vector

(256)

Anomaly detection: pixel-wise error distribution

➢ We can use the pixel wise error between input and output.

➢ We proved that this fits a Skellam distribution (only significant source of noise is Poisson)

However, we still have much to do:

➢ We want to combine both anomaly detection approach for increased confidence.

➢ We want to set thresholds defined by users needs and tolerances.
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Connection to ALCF: two DOE facilities

➢ We have allocation at Theta and ThetaGPU for this experiment.

➢ We are establishing a connection from a computer in the control room at BNL to ALCF.

➢ We plan to allow users to train / do inference with the model using ALCF resources for near-real 

time results (training on single GPU ~ 12 sec/epoch).

➢ This would be as simple as running a Jupyter notebook (for inference) and we already have 

custom built code for analysis and instrumental diagnostics.

Accelerator Test Facility (ATF @ BNL) Argonne Leadership Computing Facility (ALCF)

https://www.alcf.anl.gov/
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Future Plans: enabling shot-to-shot with ML

➢ Add beamline extension to measure concurrent diffraction patterns of a baseline sample. We will 

use this as a shot-to-shot nondestructive diagnostic tool.

➢ We plan to employ ML/AI techniques for control of the instrument.

➢ Simulations of the beamline underway to use a surrogate model for control.

Baseline sample
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Conclusions

✓ We applied a convolutional autoencoder for reconstruction of electron diffraction patterns.

✓ The machine performs well and also denoises (great plus!).

✓ Both pixel-wise reconstruction error and OCSVM applied to feature vector are good detectors of 

anomalies.

✓ Next step: combining both approaches for more robust (and tunable) anomaly detection.

✓ We stablished a workflow for data originating from ATF to stream to ALCF.

✓ Upcoming: applying the machine to other materials. Interested in MUED? If so, biedron@unm.edu

One-class support vector machine, unsupervised



18

• Two main tracks for February, 2023

– Beamline Operations (w/M. Fedurin and W. Li and M. Babzien)

• Trained on beamline operations in order to get diffraction data (J. Li has accepted another position 

so I had to come up to speed quickly)

– Beamline Alignment and procedure development; “start-to-finish” training

– Learning how to perform tasks such as energy calibration

– Identifying factors that affect data quality

– Etc…

– Software/computer operations development (w/B. Malone) For example:

• Identified a method for remote operation

• Implemented python to call camera library functions

• Script development such as “sanity checks” for establishing meaningful detector communication

• Communicated directly with the Andor camera in preparation for image export t ALCF

• Initialized camera API environment

• Next phase is to develop a stand-alone code using functions outside of solis

Recent Beamline Activities
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• A significant opportunity for a more “self-driving” beamline

• A lot of details…

– What are the “knobs” that we can adjust to optimize the beamline 

performance?

• I’ve been collecting data for preliminary examination

• Additional diagnostics?

– How is data going to be prepared for transfer over to the ALCF?

– How is it fed back to the beamline?

– Etc…

– Going to involve significant teamwork!

Details of future plans…
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Publications, etc.

Publication

Updates in Efforts to Data Science Enabled MeV Ultrafast Electron Diffraction System, S. Biedron, T.B. Bolin, M. Martínez-Ramón, S.I. Sosa Guitron, M. Babzien, 

M.G. Fedurin, J.J. Li, M.A. Palmer, D. Martin, M.E. Papka, in Proc. IPAC'22, Bangkok, Thailand, pp. 397-399. doi:10.18429/JACoW-IPAC2022-MOPOPT057 (2022)

Design of a Surrogate Model for MUED at BNL Using VSim, Elegant and HPC Salvador Sosa Guitron, Sandra Biedron, Trudy Bolin (Oct 20, 2022) Published 

in: JACoW NAPAC2022 (2022)

Data Analysis and Control of an MeV Ultrafast Electron Diffraction System using Machine Learning Trudy Bolin, Marcus Babzien, Sandra Biedro, Mariana Fazio, Mikhail 

Fedurin, et al. (Oct 19, 2022) Published in: JACoW LINAC2022 (2022)

Presentations & Posters

3rd ICFA Beam Dynamics Mini-Workshop on Machine Learning Applications for Particle Accelerators Hosted by Brookhaven National Laboratory, Chicago, IL November 

1-4, 2022

Data Analysis and Control of a MeV Ultrafast Electron Diffraction System using Machine Learning, Trudy Bolin, Salvador Sosa Guitron, Junjie Li, Marcus Babzien, Mikhail 

Fedurin, Mark A. Palmer, Manel Martínez-Ramón, Sandra G. Biedron

APS March Meeting 2023, Las Vegas, Nevada (March 5-10) (upcoming)

Updates to an MeV Ultrafast Electron Diffraction (MUED) System for Data Analysis and Control using Machine Learning, Trudy B Bolin, (UNM), Salvador Sosa Guitron

(UNM), Aasma Aaslam (UNM) Sandra G Biedron(UNM)

CoDA 2023, Santa Fe, New Mexico, (March 7-9) (upcoming)

Data Analysis and Control of an MeV Ultrafast Electron Diffraction System using Machine Learning Trudy Bolin, Salvador Sosa, Aasma Aslam, Sandra Biedron

As of 2022…

Two more papers in preparation on the beamline surrogate model and data analysis….

https://inspirehep.net/literature/2614647
https://inspirehep.net/authors/1962193
https://inspirehep.net/authors/1075884
https://inspirehep.net/authors/2019441
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Thank you for your attention

This material is based upon work supported by the U.S. Department of Energy, Office of 

Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, 

Program of Electron and Scanning Probe Microscopies, under award number DE-

SC0021365. This funding was made available through the Department of Energy's 

Established Program to Stimulate Competitive Research (EPSCoR) State-National 

Laboratory Partnerships program in the Office of Basic Energy Sciences. This research 

used resources of the Brookhaven National Laboratory's Accelerator Test Facility, which 

is a DOE Office of Science User Facility. This research used resources of the Argonne 

Leadership Computing Facility, which is a DOE Office of Science User Facility.

We wish to extend our heartfelt thanks to Mariana Fazio for her contributions to this project.
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• Mark Palmer

• Mikhail Fedurin

• Junjie Li

• William Li

• Marcus Babzien

• Bob Malone

• Karl Kusche

• MJ Ilardi

Very Special Thanks to ATF people…

Thank You!
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