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6.2. Stripixel Irradiation

The sixteen BNL test diodes and two stripixel sensors were irradiated at radial distance
10 cm from the beam line in the PHENIX IR in Run 6. This will be the actual position
of the stripixel sensors in the third layer of the VTX array. The center axis of the top
strip was offset by 2 cm from the beam line so that one of the stripixel sensors would be
directly underneath the interaction point. However the stripixel sensor placed underneath
the interaction point was mechanically damaged so we only have results from one of the
sensors.
There were two kinds of test diodes with different volumes which were 0.01 cm3 and

0.004 cm3. The increase of the leakage current of the diodes and the relevant fluences are
summarized in Table 5. Only fifteen diodes are listed since the other diode was found to
be defective during the leakage current measurement. The average fluence of the diodes
was 1.0×1010 Neq/cm2. The estimated z dependence of the diode fluence is shown in
Fig. 17 which is in agreement with the TLDs.
The sensor was irradiated at Z=25.2 cm for about 50 days and the integrated luminosity

during this time was 12 pb−1. The current related damage rate α was estimated to
be 3.2×10−17 A/cm using the temperature history of the temperature loggers in the
PHENIX IR. The increase of leakage current of a single strip was 2.2×10−10 A/strip as
seen in Table 5. Figure 18 shows the IV and CV measurements, where the leakage current
and capacitance were measured before and after irradiation. The fluence of irradiated
stripixel sensor was estimated to be 9.4×109 Neq/cm2 which is consistent with the average
fluence of the reference diodes.

Fig. 17. Fluence of irradiated stripixel sensor and diodes at R=10 cm in PHENIX IR.

6.3. Chipmunks

The chipmunks provide a sensitive way to monitor the instantaneous rate of radiation
in the IR. They are configured to read in dose equivalent units, i.e. “mrem/hr” on a meter.
There is also an accompanying frequency output (Hz) that is proportional to the meter
reading, calibrated with the use of a test source Cs-137. C-AD personnel determined
that for Chipmunk 1 (positioned at 63 cm distance from the beam pipe) 4.68 Hz = 42
mrem/hr, and for Chipmunk 2 (positioned at 33 cm distance from the beam pipe) 4.86
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cm−2s−1 so the silicon stripixel sensors will be exposed to a significant amount of radiation. The
most problematic radiation effect for VTX is the increase of leakage current, which degrades the
signal to noise ratio and may saturate the readout electronics.

We studied the radiation damage using the same diodes as CERN-RD48. First, the propor-
tionality between the irradiation fluence and the increase of leakage current of CERN-RD48 was
reproduced. Then beam experiments with stripixel sensor were done in which leakage current
was found to increase in the same way as that of the reference diode.

A stripixel sensor was also irradiated at the PHENIX interaction region (IR) during the 2006
run. We found the same relation between the integrated luminosity and determined fluence
from increase of leakage current. The expected fluence is 3-6×1012 Φeq/cm

2 (1 MeV neutron
equivalent) in RHIC II operations for 10 years. Due to this expected exposure, setting the
operating temperature in PHENIX to T ≤ 0 ◦C to suppress leakage current is needed to avoid
saturation of preamplifiers.
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FVTX ROC Layout
backplane, through the graphite feet to the skin of the support
disks, and finally to the cooling channel at the outer radius of the
disks. With the cooling channel located at the outer radius of the
wedge, a temperature gradient of !4 1C is developed across the
length of the wedge during normal operation.

The ROC cards are mounted onto a 1/8 in. aluminum plate, with
approximately 1/8 in. of Gap-Pad in between. These plates are

cooled via chilled fluid circulation through an aluminum tube dip-
brazed to the outer edge of the plate.

The cooling system for the FVTX consists of two identical closed
loops operated at different temperatures. One loop provides 0 1C
cooling fluid to the disks that the wedges are mounted on, while
the other provides 10 1C fluid to the aluminum cooling plates holding
the ROC boards. The systems are composed of a chiller (stainless
wetted parts), stainless steel transfer lines, and a manifold and flow
control system, with short PTFE and Tygon tubing section where
flexibility is required. The system also has a continuously running
parallel cleaning loop to remove contaminants. The detector and the
manifold system are located inside our interaction area and are
inaccessible while the collider is operating. Because of this, a remote
monitoring and interlock system was developed to prevent detector
damage in the case of accidental loss of cooling. A schematic of one of
the systems is shown in Fig. 21.

The coolant used in the system is Novec 7200 (ethoxy-nona-
fluorobutane) manufactured by 3 M [13]. Novec 7200 is an
engineered fluid that was developed as both a heat transfer fluid
and a cleaning fluid. Novec 7200 is clear, non-conductive, non-
corrosive, low odor, and a low toxicity fluid that has zero ozone-
depletion potential. In addition, it has very low greenhouse gas
properties, and can be used as a heat transfer fluid in the
temperature range "138 1C to 76 1C. The coolant leaves no residue
behind when it evaporates. These characteristics make it very

Fig. 20. A completed half-detector, with the VTX barrels in the center, and the two
FVTX endcaps on either end. The overall length is 80 cm.

Fig. 21. Schematic of one FVTX cooling loop.
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Fig. 20. A completed half-detector, with the VTX barrels in the center, and the two
FVTX endcaps on either end. The overall length is 80 cm.

Fig. 21. Schematic of one FVTX cooling loop.
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ROC
Before a disk was mounted into a cage, a temporary transfer

fixture was fitted to the centerline of the disk. Extension cables
(Section 3.4) were connected to the wedges, as well as bias voltage
coaxial cables and disk cooling tubes. The transfer fixture also
supported these cables. At this point, the disk was disconnected
from its three precision mount points on the assembly frame and
was transferred into a cage.

The disks were mounted into a cage on the three precision mount
points located on the outer radius of the disk. To maximize
the detector's ϕ resolution, each of the four disks are mounted
into the cage offset in ϕ by an angle 3.751/4 with respect to the
neighboring disk.

4.3. Cages

The cages, into which disk assemblies are mounted, are carbon-
composite structures fabricated from CN60 carbon fabric (Nippon
Graphite Fiber) with EX1515 resin. One of these cages is shown in
Fig. 18 with four mounted disks (without wedges). During con-
struction, the cage was mounted in an assembly structure that also
supported the aluminum cooling plate onto which the ROC boards
(6 per quadrant) are mounted, as shown in Fig. 19. A soft material
(Gap-Pad by the Bergquist Company), approximately 1/8 in. thick,
is placed between the ROC and the cooling plate to improve heat
transfer. Each disk is mounted into a cage on three mount points,
each of which has an alignment pin and a screw. First the small
disk was mounted, and extension cables connected to the ROC
boards, followed by the three large disks in turn. At the inner
radius of the ROC boards, pairs of connectors can be seen, one pair

for each wedge/extension cable. A completed half-detector is
shown in Fig. 20.

During the selection for the support materials several factors were
considered: low radiation length is desirable to minimize interactions
in detector materials; high rigidity is necessary for maintaining
alignment and stability of detector components; ease of machining
and availability are important for construction. Candidate materials for
the FVTX support structures were beryllium, glass fiber reinforced
polymer, and carbon–carbon composite.

The wedge backplanes were constructed from K13D2U prepreg
with EX1515 resin, 1.56 mm thick. This fiber was selected because
of its good thermal conductivity, which is necessary to remove
heat generated by the FPHX read-out chips. For the 0.4 mm thick
disk face sheets, K13C2U prepreg with EX1515 resin was chosen
because it is widely available, works well in sandwich composites,
and has a small radiation length and favorable strength properties.
For similar reasons, the cage was made from 6 plies of CN-60 cloth,
for a thickness of 1.5 mm.

The vibrational mode frequencies, gravitational load distor-
tions, and shape changes with temperature were studied for all
mechanical structures, and used to verify that the dimensional
stability requirements were met.

4.4. Cooling

Heat generated by the FPHX chips on the wedge assemblies
amounts to 390 μW/channel, or 1.3 W for a large wedge. The heat
is conducted from the chips to the HDI, through the wedge carbon

Fig. 16. Exploded view of a support disk.

Fig. 17. A populated disk in its support frame. Some of the cover sheets are in place.
The hoop will support the extension cables that will be connected to the wedges
prior to installation in the cage.

Fig. 18. A cage with all four disks installed. No wedges have been placed on
the disks.

Fig. 19. A cage and ROC boards on an assembly frame. An unpopulated small disk is
mounted at the rear of the cage.
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the beam direction into seven active strips. The TMA has
35 plastic-scintillator tiles !12 cm 3 12 cm 3 0.5 cm" lo-
cated 13.9 cm from the beam axis. The effective coverage
of the MA is 23.0 # h # 3.0. The SiMA is used alone
for determining dNch#dh values near midrapidity because
of its higher segmentation. However, both the SiMA and
TMA are used for establishing reaction centrality, as dis-
cussed below. Particle multiplicities are deduced from
the observed energy loss in the SiMA and TMA elements
by using GEANT simulations [12] to relate energy loss to
the number of particles hitting a given detector element
[9]. SiMA and TMA elements are calibrated using low-
multiplicity events, where well-defined peaks are observed
in the individual energy spectra corresponding to single-
particle hits [9].

The BBC arrays consist of two sets of Cherenkov UV-
transmitting plastic radiators coupled to photomultiplier
tubes. The Cherenkov radiators are positioned around the
beam pipe with one set on either side of the nominal inter-
action point at a distance of 2.20 m. The time resolution
of the BBC elements permits the determination of the in-
teraction point with an accuracy of $0.9 cm. Charged-
particle multiplicities with 2.1 # jhj # 4.7 are deduced
from the number of particles hitting each detector, as found
by dividing the measured detector signal by the average re-
sponse of the detector to a single particle.

The ZDCs are located 618 m from the nominal interac-
tion point and measure neutrons that are emitted at small
angles with respect to the beam direction [13]. Clean se-
lection of minimum-biased events required a coincidence
between the two ZDC detectors and a minimum of four
“hits” in the TMA. It is estimated that this selection in-
cludes 95% of the Au 1 Au total inelastic cross section.

Reaction centrality is determined by selecting different
regions in the total multiplicity distribution of either the
MA or the BBC arrays. The distributions are adjusted for
“missed” events, as described in Ref. [9]. In determining
dNch#dh, the centrality dependence of the MA and BBC
distributions are based on the total multiplicity measure-
ments of the corresponding array, thus allowing a range of
vertex locations to be used in the BBC analysis beyond the
acceptance of the MA (see Ref. [9]). For 3.0 # jhj # 4.2,
where it was possible to analyze the BBC data using both
centrality selections, the two analyses give results to within
2% of each other. In general, statistical errors on the
measurements are less than 1%, with systematic errors of
8% and 10% for the SiMA and BBC arrays, respectively.
The systematic errors are dominated by overall scaling un-
certainties resulting from the calibration procedures and
should primarily lead to a common scale offset for data
obtained at the two RHIC energies. However, there may
be as much as a 3% relative scale error between the two
energies. A point-to-point error is also present, as indi-
cated by the small asymmetry seen in Fig. 1 for the more
central collisions.

Figure 1 shows the measured dNch#dh distributions
for charged particles for several centrality ranges. The
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FIG. 1. Distributions of dNch#dh for centrality ranges
of, top to bottom, !0 5"%, !5 10"%, !10 20"%, !20 30"%,
!30 40"%, and !40 50"%. The SiMA and BBC results are indi-
cated by circles and triangles, respectively. Statistical errors are
shown for all points where they are larger than the symbol size.

dNch#dh values for these selected centralities at h ! 0,
3.0, and 4.5 are listed in Table I, together with the average
number of participating nucleons %Npart&estimated from
the HIJING (heavy-ion jet interaction generator) model
[14] using default parameters. For the most central col-
lisions '!0 5"%(, dNch#dhjh!0 ! 625 6 1!stat" 6
55!syst". This gives a scaled multiplicity value of
!dNch#dh"#%Npart#2&! 3.5 6 0.3 charged particles per
participating nucleon pair and indicates a !13 6 4"% in-
crease relative to Au 1 Au reactions at

p
sNN ! 130 GeV

[9,15]. For the most peripheral collisions analyzed here
'!40 50"%(, we find dNch#dhjh!0 ! 110 6 10, result-
ing in a scaled value of 3.0 6 0.4. By integrating the
!0 5"% multiplicity distribution we deduce that 4630 6
370 charged particles are emitted in the considered pseu-
dorapidity range. This value is !21 6 4"% higher than atp

sNN ! 130 GeV [9].
While the scaled multiplicities increase with centrality

at midrapidity, Fig. 2 shows they are independent of both
collision centrality and beam energy over a pseudorapidity
range from 0.5 to 1.5 units below the beam rapidity. This
is found for energies ranging from the CERN-SPS energy
!psNN ! 17 GeV" [16] to the present RHIC beam energy
and is consistent with a limiting-fragmentation picture in
which the excitations of the fragment baryons saturate at
a moderate collision energy, independent of system size
[9]. The increased projectile kinetic energy is utilized for
particle production below beam rapidity, as evidenced by
the observed increase in the scaled multiplicity for central
events at midrapidity.

Figure 3 presents the dNch#dh distributions obtained
by averaging the values for negative and positive pseudo-
rapidities to further decrease the experimental uncertain-
ties. The solid lines are calculations using the model of
Kharzeev and Levin [5]. This model, which is based on
a classical QCD calculation using parameters fixed to thep

sNN ! 130 GeV data, is able to reproduce the magnitude
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the beam direction into seven active strips. The TMA has
35 plastic-scintillator tiles !12 cm 3 12 cm 3 0.5 cm" lo-
cated 13.9 cm from the beam axis. The effective coverage
of the MA is 23.0 # h # 3.0. The SiMA is used alone
for determining dNch#dh values near midrapidity because
of its higher segmentation. However, both the SiMA and
TMA are used for establishing reaction centrality, as dis-
cussed below. Particle multiplicities are deduced from
the observed energy loss in the SiMA and TMA elements
by using GEANT simulations [12] to relate energy loss to
the number of particles hitting a given detector element
[9]. SiMA and TMA elements are calibrated using low-
multiplicity events, where well-defined peaks are observed
in the individual energy spectra corresponding to single-
particle hits [9].

The BBC arrays consist of two sets of Cherenkov UV-
transmitting plastic radiators coupled to photomultiplier
tubes. The Cherenkov radiators are positioned around the
beam pipe with one set on either side of the nominal inter-
action point at a distance of 2.20 m. The time resolution
of the BBC elements permits the determination of the in-
teraction point with an accuracy of $0.9 cm. Charged-
particle multiplicities with 2.1 # jhj # 4.7 are deduced
from the number of particles hitting each detector, as found
by dividing the measured detector signal by the average re-
sponse of the detector to a single particle.

The ZDCs are located 618 m from the nominal interac-
tion point and measure neutrons that are emitted at small
angles with respect to the beam direction [13]. Clean se-
lection of minimum-biased events required a coincidence
between the two ZDC detectors and a minimum of four
“hits” in the TMA. It is estimated that this selection in-
cludes 95% of the Au 1 Au total inelastic cross section.

Reaction centrality is determined by selecting different
regions in the total multiplicity distribution of either the
MA or the BBC arrays. The distributions are adjusted for
“missed” events, as described in Ref. [9]. In determining
dNch#dh, the centrality dependence of the MA and BBC
distributions are based on the total multiplicity measure-
ments of the corresponding array, thus allowing a range of
vertex locations to be used in the BBC analysis beyond the
acceptance of the MA (see Ref. [9]). For 3.0 # jhj # 4.2,
where it was possible to analyze the BBC data using both
centrality selections, the two analyses give results to within
2% of each other. In general, statistical errors on the
measurements are less than 1%, with systematic errors of
8% and 10% for the SiMA and BBC arrays, respectively.
The systematic errors are dominated by overall scaling un-
certainties resulting from the calibration procedures and
should primarily lead to a common scale offset for data
obtained at the two RHIC energies. However, there may
be as much as a 3% relative scale error between the two
energies. A point-to-point error is also present, as indi-
cated by the small asymmetry seen in Fig. 1 for the more
central collisions.

Figure 1 shows the measured dNch#dh distributions
for charged particles for several centrality ranges. The
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FIG. 1. Distributions of dNch#dh for centrality ranges
of, top to bottom, !0 5"%, !5 10"%, !10 20"%, !20 30"%,
!30 40"%, and !40 50"%. The SiMA and BBC results are indi-
cated by circles and triangles, respectively. Statistical errors are
shown for all points where they are larger than the symbol size.

dNch#dh values for these selected centralities at h ! 0,
3.0, and 4.5 are listed in Table I, together with the average
number of participating nucleons %Npart&estimated from
the HIJING (heavy-ion jet interaction generator) model
[14] using default parameters. For the most central col-
lisions '!0 5"%(, dNch#dhjh!0 ! 625 6 1!stat" 6
55!syst". This gives a scaled multiplicity value of
!dNch#dh"#%Npart#2&! 3.5 6 0.3 charged particles per
participating nucleon pair and indicates a !13 6 4"% in-
crease relative to Au 1 Au reactions at

p
sNN ! 130 GeV

[9,15]. For the most peripheral collisions analyzed here
'!40 50"%(, we find dNch#dhjh!0 ! 110 6 10, result-
ing in a scaled value of 3.0 6 0.4. By integrating the
!0 5"% multiplicity distribution we deduce that 4630 6
370 charged particles are emitted in the considered pseu-
dorapidity range. This value is !21 6 4"% higher than atp

sNN ! 130 GeV [9].
While the scaled multiplicities increase with centrality

at midrapidity, Fig. 2 shows they are independent of both
collision centrality and beam energy over a pseudorapidity
range from 0.5 to 1.5 units below the beam rapidity. This
is found for energies ranging from the CERN-SPS energy
!psNN ! 17 GeV" [16] to the present RHIC beam energy
and is consistent with a limiting-fragmentation picture in
which the excitations of the fragment baryons saturate at
a moderate collision energy, independent of system size
[9]. The increased projectile kinetic energy is utilized for
particle production below beam rapidity, as evidenced by
the observed increase in the scaled multiplicity for central
events at midrapidity.

Figure 3 presents the dNch#dh distributions obtained
by averaging the values for negative and positive pseudo-
rapidities to further decrease the experimental uncertain-
ties. The solid lines are calculations using the model of
Kharzeev and Levin [5]. This model, which is based on
a classical QCD calculation using parameters fixed to thep

sNN ! 130 GeV data, is able to reproduce the magnitude
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FVTX Operation Run12 ~ Run16
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Total  Delivered Luminosity = 1785/pb without correction

𝐿!"!"#$%&'$($) = 𝐿**#$%&'$($)(100𝐺𝑒𝑉)×𝜖+*$,&$-×𝜖$.$(/0



Energy Correction in p+p

10

𝜀!"!#$%=
𝜎&(̅(& 546𝐺𝑒𝑉
𝜎&(̅(& 200𝐺𝑒𝑉

~ 1.2

at h=0.88 where TLK chips of ROC are in FVTX 



Species Correction
Species p d 3He Al Cu Au U

Mass Number A 1 2 3 27 63.5 197 238

11

𝜀)(!*+!) =
𝐴,∗,
𝐴(∗(

𝜀(.#/+*+(."/) =
𝑁*011+)+0"

𝑁(.#/+*+(."/)
~
260
110

~2.5

Example: Au+Au = 197*197
p+Au = 197*1



PHENIX Total Delivered Lumi Estimation w/ Corrections
Run species Species 

Correction
Beam 
Energy

Energy 
Correction

Integrated 
Luminosicy Unit Integ Lumi

[/pb]
Delivered 

Lumi Unit Delivered 
Lumi [/pb]

Delivered 
Lumi*Specie

s*Energy 
corrections 

[/pb]

12

p+p 1 100 1 38/pb 38 74/pb 74 74.0
p+p 1 250 1.2 133/pb 133 283/pb 283 339.6
U+U 22658 96 0.96 368/ub 0.000368 736/ub 0.000736 16.0
Cu+Au 5004 100 1 13.5/nb 0.0135 27/nb 0.027 135.1

13 p+p 1 250 1.2 543/pb 543 1.04/fb 1040 1248.0

14
Au+Au 15524 7.3 0.073* 23/ub 0.000023 44.2/ub 0.0000442 0.1
Au+Au 15524 100 1 23/nb 0.023 43.9/nb 0.0439 681.5
3he+Au 591 100 1 72/nb 0.072 134/nb 0.134 79.2

15
p+p 1 100 1 196.7/pb 196.7 382/pb 382 382.0
p+Au 197 100 1 63/pb 63 1.27/pb 1.27 250.2
p+Al 27 100 1 2.3/pb 2.3 3.87/pb 3.87 104.5

16

Au+Au 15524 100 1 52/nb 0.000052 52.2/nb 0.0522 810.3
d+Au 394 100 1 155/nb 0.155 289/nb 0.289 113.9
d+Au 394 31 0.31* 22.8/nb 0.0228 44/nb 0.044 5.4
d+Au 394 10 0.1* 3.75/nb 0.00375 7.2/nb 0.0072 0.3
d+Au 394 19.5 0.195* 9.5/nb 0.0095 19.5/nb 0.0195 1.5

Total 976 1785 4241

12𝐿!"!"#$%&'$($) = 𝐿**#$%&'$($)(100𝐺𝑒𝑉)×𝜖+*$,&$-×𝜖$.$(/0
*Linear scale assumed for low energy runs 
(negligible contribution anyway)

sPHENIX_IntegLumi.xlsx
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Table 2: Demonstrated and projected luminosities for 100 GeV/nucleon Au+Au runs.  

Parameter Unit FY2007 2010 2011 2014 2016 2023E 2025E 
No of bunches kb … 103 111 111 111 111 111 111 
Ions/bunch, initial Nb 109 1.1 1.1 1.3 1.6 2.0 2.4 2.90 
Average beam current/ring Iavg mA 112 121 147 176 224 265 319 
Stored beam energy MJ 0.36 0.39 0.47 0.56 0.71 0.84 1.0 
Envelope function at IP b* m 0.85 0.75 0.75 0.70 0.70 0.70 0.65 
Beam-beam parameter x/IP 10-3 -1.7 -1.5 -2.1 -2.5 -3.9 -4.6 -5.6 
Initial luminosity Linit 1026 cm-2s-1 30  40  50  80  155  215  336  
Events per bunch-bunch crossing µ  … 0.08 0.10 0.13 0.21 0.40 0.55 0.86 
Average/initial luminosity % 40 50 60 62 56 58 60 
Average store luminosity Lavg 1026 cm-2s-1 12 20 30 50 87 125 200 
Time in store % 48 53 59 68 65 60 60 
Max. luminosity/week µb-1 380 650 1000 2200 3000 4530 7260 
Min. luminosity/week µb-1       3000 3000 
L within |z|<10 cm, q = 0 mrad, r0/rq * %      39/39 39/39 
L within |z|<10 cm, q = 2 mrad, r0/rq * %      31/81 31/81 

* Luminosity L(z,q) within vertex cut |z| for full crossing angle q. The values r0/rq are r0 = L(z,q)/L(10 m,0) and rq = L(z,q)/L(10 m,q). 
 
Table 3: Demonstrated and max projected luminosities and polarization for p­+p­ and p­+Au runs at 100 GeV. 

  p­+p­ p­+Au 
Parameter Unit FY2008 2009 2012 2015 2024E FY2015 2024E 

No of colliding bunches kb … 109 109 109 111 111 111 111 
Protons/bunch, initial Nb 1011 1.5 1.3 1.6 2.25 2.5 225/1.6 250/2.4 
Average beam current/ring Iavg mA 198 179 214 312 347 313/176 348/266 
Stored beam energy  MJ 0.25 0.23 0.27 0.40 0.45 0.40/0.56 0.45/0.84 
Envelope function at IP b* m 1.00 0.70 0.85 0.85 0.85 0.85/0.70 0.85/0.70 
Hourglass factor H … 0.77 0.72 0.74 0.75 0.84 0.72 0.72 
Beam-beam parameter x/IP 10-3 -5.3 -6.3 -5.8 -9.7 -11.7 -5.3/-4.1 -11.7/-4.3 

Initial luminosity Linit 1030 cm-2s-1 35 50 46 115 176 0.88 1.68 
Events per bunch-bunch crossing µ  … 0.2 0.3 0.3 0.7 1.1   
Average/initial luminosity % 65 56 71 55 57 51 54 
Average store luminosity Lavg 1030 cm-2s-1 23 28 33 63 100 0.45 0.90 
Time in store % 60 53 59 64 60 65 60 
Max. luminosity/week pb-1 7.5  8.3  9.3  25  36  0.140 0.326 
Min. luminosity/week pb-1       25  0.140 
L within |z|<10 cm, q = 0 mrad, r0/rq * %     22/22  29/29 
L within |z|<10 cm, q = 2 mrad, r0/rq * %     19/69  24/75 
AGS extraction, Pmax % 55 65 72 68 68 68 68 
RHIC store average, Pmax % 45 56 59 57 60 60 60 
RHIC store average, Pmin %         57   57 

* Luminosity L(z,q) within vertex cut |z| for full crossing angle q. The values r0/rq are r0 = L(z,q)/L(10 m,0) and rq = L(z,q)/L(10 m,q). 
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This note discusses in Part I general constraints and past performance. Constraints arise from the times 

needed for cryogenic cool-down, machine set-up and beam commissioning. In Part II an outlook is given 

for possible running modes in Run-23 through Run-25. 

 
In the following all quoted luminosities are delivered luminosities. Recorded luminosities are smaller due to 
vertex cuts, detector uptime, and other considerations. An estimate of how much of the delivered luminosity 
can be recorded must be made by every experiment individually. Quoted beam polarization numbers are 
intensity-averaged and time-averaged as measured by the hydrogen jet. The luminosity-weighted polarization 
functions and figures of merit can be calculated from the center polarization and polarization profile 
parameters.  
 

Part I – General Constraints and Past Performance 
 

Time of cryogenic operation – After a shutdown the two RHIC rings are usually at room temperature. 

After bringing the rings to 50 K over approximately 1 month, 0.5 weeks will be required to cool them down 

from 50 K to 4 K. At the end of the run 0.5 weeks are required for a controlled turn-off of refrigerator 

operation.  

Typically, when starting the run, we plan for about 1 week of machine set-up (no dedicated time for 

experiments) with the goal of establishing collisions, and about 0.5 weeks machine ramp-up (8 h/night for 

experiments) after which stable operation can be provided with integrated luminosities that are a fraction 

of the maximum luminosity goals. The set-up and ramp-up period for polarized protons would be up to 1 

week longer than for ions to allow for the set-up of polarimetry, snakes, and rotators. During the ramp-up 

period detector set-up can occur. Expected commissioning efforts vary with the operating mode.  

Higher weekly luminosities and polarization are achievable with a continuous development effort in the 

following weeks. We propose to use the day shifts from Monday to Friday for this effort as needed and 

coordinated with sPHENIX and STAR. The luminosity or polarization development efforts should stop 

when insurmountable limits, posed by either the current machine or detector configuration, are reached.  

After a running mode has been established, the collision energy in the same mode can be changed in about 

a day. A change of the polarization orientation at any or all of the experiments requires 1-2 shifts. 

 

24 weeks of RHIC refrigerator operation in FY 2023 could be scheduled in the following way: 
 
Cool-down from 50 K to 4 K   0.5 weeks 
 
Set-up (Au+Au)     1.0 weeks (no dedicated time for experiments) 
Ramp-up and experimenter set-up (Au+Au)  0.5 weeks  
 
Mode 1A (100 GeV/nucleon)   21.5 weeks 
 
Controlled refrigerator turn-off   0.5 weeks 
 
Past performance – Table 1 shows the achieved luminosities for all ion combinations at the highest energy, 

and for polarized protons at 100 and 255 GeV. The time in store was 65% of the total time for Au+Au (Run-

16) and 62% for p­+p­ (255 GeV, Run-17). Note that the total time includes all interruptions such as 

ramping, set-up, maintenance, machine development, accelerator physics experiments, and failures. A 
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Year Species Species 
Correction Energy [GeV]

Energy 
Correction 

Factor

Max. Deliv. 
Lumi / Week 

[/nb]
Cryo Week Year Total 

[/nb]
Year Total 

[/pb]

Year Ttotal 
*Species 
*Energy 

corrections 
[/pb]

2023Au+Au 15523.6 200 1 4.53 28 126.84 0.1 1969

2024p+p 1 200 1 3.60E+04 21 7.68E+05 768.0 768

p+Au 197 200 1 3.26E+02 7 2.17E+03 2.2 428

2025Au+Au 15523.6 200 1 7.26 28 203.28 0.2 3156

Total Dose 6321sPHENIX_IntegLumi.xlsx
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Total Radiation Dose Estimate
Delivered 
Luminosi
ty [/pb]

r [cm] z [cm] h W [str] eh eW
Neq

[/cm2]
Dose 
[Gy]

Asai et al. 12 10 25 3.2 1.4 x 10-3 1 1 1010 3.8

FVTX 
TLK 4241 40 40 0.88 3.1 x 10-4 1 0.23 8.0 x 1011 300

INTT 
TLK 6321 35 157 4.5 3.9 x 10-5 0.3 0.028 4.4 x 1010 16.6

14

𝑁!"
#$%&,()%% = 𝑁!"*+,-×𝜖.×𝜖/

The expected radiation dose of TLKs during INTT operation is about 5% of accumulated dose 
during FVTX. Mainly because of far distance from the vertex in z of INTT ROC boards.

𝐷𝑜𝑠𝑒 = 𝑁!" ⁄1 𝑐𝑚# × 3.75×10$%& 𝐺𝑦 3 𝑐𝑚#sPHENIX_IntegLumi.xlsx



Neq→Sv Conversion Coefficient

𝐷𝑜𝑠𝑒 = 𝑁,- ⁄1 𝑐𝑚. × 3×10. 𝑝𝑆𝑣 1 𝑐𝑚.

= 𝑁,- ⁄1 𝑐𝑚. × 3.75×10/01 𝐺𝑦 1 𝑐𝑚.

15https://www.icrp.org/docs/P116_Japanese.pdf

1M
eV

3×102 pSv・cm2

Neq [/cm2] Dose [Gy]

7.0 x 1011 260

3.8 x 1010 14



Radiation Tolerance of 
TLK2711
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Why quite a few ROCs are suffered from the fiber latch issue?

17

• Radiation damage?
• If so, we have higher chances to 

be suffered new cases during the 
beam operation than FVTX since 
we start from already accumulated 
dose during FVTX operation.
• We better be prepared. 
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TLK2711-SP 1.6-Gbps to 2.5-Gbps Class V Transceiver

1

(1) These units are intended for engineering evaluation only.
They are processed to a non-compliant flow (for example, no
burn-in, and so forth) and are tested to temperature rating of
25°C only. These units are not suitable for qualification,
production, radiation testing, or flight use. Parts are not
warranted for performance on full MIL specified temperature
range of –55°C to 125°C or operating life.

1 Features
1• 1.6 to 2.5-Gbps (Gigabits Per Second)

Serializer/Deserializer
• Hot-Plug Protection
• High-Performance 68-Pin Ceramic Quad Flat

Pack Package (HFG)
• Low-Power Operation
• Programmable Preemphasis Levels on Serial

Output
• Interfaces to Backplane, Copper Cables, or

Optical Converters
• On-Chip 8-Bit/10-Bit Encoding/Decoding, Comma

Detect
• On-Chip PLL Provides Clock Synthesis From

Low-Speed Reference
• Low Power: < 500 mW
• 3-V Tolerance on Parallel Data Input Signals
• 16-Bit Parallel TTL-Compatible Data Interface
• Ideal for High-Speed Backplane Interconnect and

Point-to-Point Data Link
• Military Temperature Range (–55°C to 125°C

Tcase)
• Loss of Signal (LOS) Detection
• Integrated 50-Ω Termination Resistors on RX
• Engineering Evaluation (/EM) Samples are

Available (1)

2 Applications
• Point-to-Point High-Speed I/O
• Data Acquisition
• Data Processing

3 Description
The TLK2711-SP is a member of the WizardLink
transceiver family of multigigabit transceivers,
intended for use in ultra-high-speed bidirectional
point-to-point data transmission systems. The
TLK2711-SP supports an effective serial interface
speed of 1.6 Gbps to 2.5 Gbps, providing up to
2 Gbps of data bandwidth.

The primary application of the TLK2711-SP is to
provide high-speed I/O data channels for point-to-
point baseband data transmission over controlled
impedance media of approximately 50 Ω. The
transmission media can be printed circuit board,
copper cables, or fiber-optic cable. The maximum
rate and distance of data transfer is dependent upon
the attenuation characteristics of the media and the
noise coupling to the environment.

Device Information(1)

PART NUMBER PACKAGE BODY SIZE (NOM)
TLK2711-SP CFP (68) 13.97 mm × 13.97 mm

(1) For all available packages, see the orderable addendum at
the end of the data sheet.

External Component Interconnection
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TLK2711-SP
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TLK2711-SP 1.6-Gbps to 2.5-Gbps Class V Transceiver

1

(1) These units are intended for engineering evaluation only.
They are processed to a non-compliant flow (for example, no
burn-in, and so forth) and are tested to temperature rating of
25°C only. These units are not suitable for qualification,
production, radiation testing, or flight use. Parts are not
warranted for performance on full MIL specified temperature
range of –55°C to 125°C or operating life.

1 Features
1• 1.6 to 2.5-Gbps (Gigabits Per Second)

Serializer/Deserializer
• Hot-Plug Protection
• High-Performance 68-Pin Ceramic Quad Flat

Pack Package (HFG)
• Low-Power Operation
• Programmable Preemphasis Levels on Serial

Output
• Interfaces to Backplane, Copper Cables, or

Optical Converters
• On-Chip 8-Bit/10-Bit Encoding/Decoding, Comma

Detect
• On-Chip PLL Provides Clock Synthesis From

Low-Speed Reference
• Low Power: < 500 mW
• 3-V Tolerance on Parallel Data Input Signals
• 16-Bit Parallel TTL-Compatible Data Interface
• Ideal for High-Speed Backplane Interconnect and

Point-to-Point Data Link
• Military Temperature Range (–55°C to 125°C

Tcase)
• Loss of Signal (LOS) Detection
• Integrated 50-Ω Termination Resistors on RX
• Engineering Evaluation (/EM) Samples are

Available (1)

2 Applications
• Point-to-Point High-Speed I/O
• Data Acquisition
• Data Processing

3 Description
The TLK2711-SP is a member of the WizardLink
transceiver family of multigigabit transceivers,
intended for use in ultra-high-speed bidirectional
point-to-point data transmission systems. The
TLK2711-SP supports an effective serial interface
speed of 1.6 Gbps to 2.5 Gbps, providing up to
2 Gbps of data bandwidth.

The primary application of the TLK2711-SP is to
provide high-speed I/O data channels for point-to-
point baseband data transmission over controlled
impedance media of approximately 50 Ω. The
transmission media can be printed circuit board,
copper cables, or fiber-optic cable. The maximum
rate and distance of data transfer is dependent upon
the attenuation characteristics of the media and the
noise coupling to the environment.

Device Information(1)

PART NUMBER PACKAGE BODY SIZE (NOM)
TLK2711-SP CFP (68) 13.97 mm × 13.97 mm

(1) For all available packages, see the orderable addendum at
the end of the data sheet.

External Component Interconnection



Radiation Damage Study by INFN

18https://slideplayer.com/slide/12764619/
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Radiation Damage Study by INFN

19https://slideplayer.com/slide/12764619/

PHENIX 300Gy
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Good, but occasional failure
No data at all 

C : Problem in Calibration pulse
F : Problem in data Fiber sync
P : Problem in Power supply
R : Recovered

Good
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Good, but occasional failure
No data at all 

C : Problem in Calibration pulse
F : Problem in data Fiber sync
P : Problem in Power supply
R : Recovered

Good

• There are 7 ROC boards 
(9 ports) wonʼt latch the 
fiber.

• 7 bad/24 ROCs = 30% of 
ROCs

• 9 bad TLKs /24ROCs x  
2x4 =9/792 ~ 1%F



Fiber Latch Failure History

21

List of ports which has failed in 
fiber latch at least once during 
ROC testing process. (K. Fujiki)
Total 42

Total Severe Suspicious
792 9 33

Fraction 1% 4%

PHENIX 260Gy
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Good, but occasional failure
No data at all 

C : Problem in Calibration pulse
F : Problem in data Fiber sync
P : Problem in Power supply
R : Recovered

Good

• There are 7 ROC boards 
(9 ports) wonʼt latch the 
fiber.

• 7 bad/24 ROCs = 30% of 
ROCs

• 9 bad TLKs /24ROCs x  
2x3ports/column x 4 
+1SC=9TLKs/600TLKs 
~ 1%

F

New SE2 A Port 1 (severe)



Summary
• Accumulated radiation dose for TLK chips throughout 5 years of 

FVTX operation. 
• The calculated radiation dose 300Gy is ~ 2/3 of slope change of 

the leakage current of TLK. 
• At this dose, 1% TLKs are severely damaged. 3% of TLKs show in 

unstable behavior.
• The expected radiation dose during INTT operation is 5% of that 

of FVTXʼs. 
• We may not be encountered by drastic failures during INTT 

operation thanks to moderate exposure of ROC position for INTT. 
(If I am not making any fatal error in my calculation).
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Radiation Dose at FVTX-TLK2711 Location
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the beam direction into seven active strips. The TMA has
35 plastic-scintillator tiles !12 cm 3 12 cm 3 0.5 cm" lo-
cated 13.9 cm from the beam axis. The effective coverage
of the MA is 23.0 # h # 3.0. The SiMA is used alone
for determining dNch#dh values near midrapidity because
of its higher segmentation. However, both the SiMA and
TMA are used for establishing reaction centrality, as dis-
cussed below. Particle multiplicities are deduced from
the observed energy loss in the SiMA and TMA elements
by using GEANT simulations [12] to relate energy loss to
the number of particles hitting a given detector element
[9]. SiMA and TMA elements are calibrated using low-
multiplicity events, where well-defined peaks are observed
in the individual energy spectra corresponding to single-
particle hits [9].

The BBC arrays consist of two sets of Cherenkov UV-
transmitting plastic radiators coupled to photomultiplier
tubes. The Cherenkov radiators are positioned around the
beam pipe with one set on either side of the nominal inter-
action point at a distance of 2.20 m. The time resolution
of the BBC elements permits the determination of the in-
teraction point with an accuracy of $0.9 cm. Charged-
particle multiplicities with 2.1 # jhj # 4.7 are deduced
from the number of particles hitting each detector, as found
by dividing the measured detector signal by the average re-
sponse of the detector to a single particle.

The ZDCs are located 618 m from the nominal interac-
tion point and measure neutrons that are emitted at small
angles with respect to the beam direction [13]. Clean se-
lection of minimum-biased events required a coincidence
between the two ZDC detectors and a minimum of four
“hits” in the TMA. It is estimated that this selection in-
cludes 95% of the Au 1 Au total inelastic cross section.

Reaction centrality is determined by selecting different
regions in the total multiplicity distribution of either the
MA or the BBC arrays. The distributions are adjusted for
“missed” events, as described in Ref. [9]. In determining
dNch#dh, the centrality dependence of the MA and BBC
distributions are based on the total multiplicity measure-
ments of the corresponding array, thus allowing a range of
vertex locations to be used in the BBC analysis beyond the
acceptance of the MA (see Ref. [9]). For 3.0 # jhj # 4.2,
where it was possible to analyze the BBC data using both
centrality selections, the two analyses give results to within
2% of each other. In general, statistical errors on the
measurements are less than 1%, with systematic errors of
8% and 10% for the SiMA and BBC arrays, respectively.
The systematic errors are dominated by overall scaling un-
certainties resulting from the calibration procedures and
should primarily lead to a common scale offset for data
obtained at the two RHIC energies. However, there may
be as much as a 3% relative scale error between the two
energies. A point-to-point error is also present, as indi-
cated by the small asymmetry seen in Fig. 1 for the more
central collisions.

Figure 1 shows the measured dNch#dh distributions
for charged particles for several centrality ranges. The
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FIG. 1. Distributions of dNch#dh for centrality ranges
of, top to bottom, !0 5"%, !5 10"%, !10 20"%, !20 30"%,
!30 40"%, and !40 50"%. The SiMA and BBC results are indi-
cated by circles and triangles, respectively. Statistical errors are
shown for all points where they are larger than the symbol size.

dNch#dh values for these selected centralities at h ! 0,
3.0, and 4.5 are listed in Table I, together with the average
number of participating nucleons %Npart&estimated from
the HIJING (heavy-ion jet interaction generator) model
[14] using default parameters. For the most central col-
lisions '!0 5"%(, dNch#dhjh!0 ! 625 6 1!stat" 6
55!syst". This gives a scaled multiplicity value of
!dNch#dh"#%Npart#2&! 3.5 6 0.3 charged particles per
participating nucleon pair and indicates a !13 6 4"% in-
crease relative to Au 1 Au reactions at

p
sNN ! 130 GeV

[9,15]. For the most peripheral collisions analyzed here
'!40 50"%(, we find dNch#dhjh!0 ! 110 6 10, result-
ing in a scaled value of 3.0 6 0.4. By integrating the
!0 5"% multiplicity distribution we deduce that 4630 6
370 charged particles are emitted in the considered pseu-
dorapidity range. This value is !21 6 4"% higher than atp

sNN ! 130 GeV [9].
While the scaled multiplicities increase with centrality

at midrapidity, Fig. 2 shows they are independent of both
collision centrality and beam energy over a pseudorapidity
range from 0.5 to 1.5 units below the beam rapidity. This
is found for energies ranging from the CERN-SPS energy
!psNN ! 17 GeV" [16] to the present RHIC beam energy
and is consistent with a limiting-fragmentation picture in
which the excitations of the fragment baryons saturate at
a moderate collision energy, independent of system size
[9]. The increased projectile kinetic energy is utilized for
particle production below beam rapidity, as evidenced by
the observed increase in the scaled multiplicity for central
events at midrapidity.

Figure 3 presents the dNch#dh distributions obtained
by averaging the values for negative and positive pseudo-
rapidities to further decrease the experimental uncertain-
ties. The solid lines are calculations using the model of
Kharzeev and Levin [5]. This model, which is based on
a classical QCD calculation using parameters fixed to thep

sNN ! 130 GeV data, is able to reproduce the magnitude
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the beam direction into seven active strips. The TMA has
35 plastic-scintillator tiles !12 cm 3 12 cm 3 0.5 cm" lo-
cated 13.9 cm from the beam axis. The effective coverage
of the MA is 23.0 # h # 3.0. The SiMA is used alone
for determining dNch#dh values near midrapidity because
of its higher segmentation. However, both the SiMA and
TMA are used for establishing reaction centrality, as dis-
cussed below. Particle multiplicities are deduced from
the observed energy loss in the SiMA and TMA elements
by using GEANT simulations [12] to relate energy loss to
the number of particles hitting a given detector element
[9]. SiMA and TMA elements are calibrated using low-
multiplicity events, where well-defined peaks are observed
in the individual energy spectra corresponding to single-
particle hits [9].

The BBC arrays consist of two sets of Cherenkov UV-
transmitting plastic radiators coupled to photomultiplier
tubes. The Cherenkov radiators are positioned around the
beam pipe with one set on either side of the nominal inter-
action point at a distance of 2.20 m. The time resolution
of the BBC elements permits the determination of the in-
teraction point with an accuracy of $0.9 cm. Charged-
particle multiplicities with 2.1 # jhj # 4.7 are deduced
from the number of particles hitting each detector, as found
by dividing the measured detector signal by the average re-
sponse of the detector to a single particle.

The ZDCs are located 618 m from the nominal interac-
tion point and measure neutrons that are emitted at small
angles with respect to the beam direction [13]. Clean se-
lection of minimum-biased events required a coincidence
between the two ZDC detectors and a minimum of four
“hits” in the TMA. It is estimated that this selection in-
cludes 95% of the Au 1 Au total inelastic cross section.

Reaction centrality is determined by selecting different
regions in the total multiplicity distribution of either the
MA or the BBC arrays. The distributions are adjusted for
“missed” events, as described in Ref. [9]. In determining
dNch#dh, the centrality dependence of the MA and BBC
distributions are based on the total multiplicity measure-
ments of the corresponding array, thus allowing a range of
vertex locations to be used in the BBC analysis beyond the
acceptance of the MA (see Ref. [9]). For 3.0 # jhj # 4.2,
where it was possible to analyze the BBC data using both
centrality selections, the two analyses give results to within
2% of each other. In general, statistical errors on the
measurements are less than 1%, with systematic errors of
8% and 10% for the SiMA and BBC arrays, respectively.
The systematic errors are dominated by overall scaling un-
certainties resulting from the calibration procedures and
should primarily lead to a common scale offset for data
obtained at the two RHIC energies. However, there may
be as much as a 3% relative scale error between the two
energies. A point-to-point error is also present, as indi-
cated by the small asymmetry seen in Fig. 1 for the more
central collisions.

Figure 1 shows the measured dNch#dh distributions
for charged particles for several centrality ranges. The
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FIG. 1. Distributions of dNch#dh for centrality ranges
of, top to bottom, !0 5"%, !5 10"%, !10 20"%, !20 30"%,
!30 40"%, and !40 50"%. The SiMA and BBC results are indi-
cated by circles and triangles, respectively. Statistical errors are
shown for all points where they are larger than the symbol size.

dNch#dh values for these selected centralities at h ! 0,
3.0, and 4.5 are listed in Table I, together with the average
number of participating nucleons %Npart&estimated from
the HIJING (heavy-ion jet interaction generator) model
[14] using default parameters. For the most central col-
lisions '!0 5"%(, dNch#dhjh!0 ! 625 6 1!stat" 6
55!syst". This gives a scaled multiplicity value of
!dNch#dh"#%Npart#2&! 3.5 6 0.3 charged particles per
participating nucleon pair and indicates a !13 6 4"% in-
crease relative to Au 1 Au reactions at

p
sNN ! 130 GeV

[9,15]. For the most peripheral collisions analyzed here
'!40 50"%(, we find dNch#dhjh!0 ! 110 6 10, result-
ing in a scaled value of 3.0 6 0.4. By integrating the
!0 5"% multiplicity distribution we deduce that 4630 6
370 charged particles are emitted in the considered pseu-
dorapidity range. This value is !21 6 4"% higher than atp

sNN ! 130 GeV [9].
While the scaled multiplicities increase with centrality

at midrapidity, Fig. 2 shows they are independent of both
collision centrality and beam energy over a pseudorapidity
range from 0.5 to 1.5 units below the beam rapidity. This
is found for energies ranging from the CERN-SPS energy
!psNN ! 17 GeV" [16] to the present RHIC beam energy
and is consistent with a limiting-fragmentation picture in
which the excitations of the fragment baryons saturate at
a moderate collision energy, independent of system size
[9]. The increased projectile kinetic energy is utilized for
particle production below beam rapidity, as evidenced by
the observed increase in the scaled multiplicity for central
events at midrapidity.

Figure 3 presents the dNch#dh distributions obtained
by averaging the values for negative and positive pseudo-
rapidities to further decrease the experimental uncertain-
ties. The solid lines are calculations using the model of
Kharzeev and Levin [5]. This model, which is based on
a classical QCD calculation using parameters fixed to thep

sNN ! 130 GeV data, is able to reproduce the magnitude
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Table 2: Demonstrated and projected luminosities for 100 GeV/nucleon Au+Au runs.  

Parameter Unit FY2007 2010 2011 2014 2016 2023E 2025E 
No of bunches kb … 103 111 111 111 111 111 111 
Ions/bunch, initial Nb 109 1.1 1.1 1.3 1.6 2.0 2.4 2.90 
Average beam current/ring Iavg mA 112 121 147 176 224 265 319 
Stored beam energy MJ 0.36 0.39 0.47 0.56 0.71 0.84 1.0 
Envelope function at IP b* m 0.85 0.75 0.75 0.70 0.70 0.70 0.65 
Beam-beam parameter x/IP 10-3 -1.7 -1.5 -2.1 -2.5 -3.9 -4.6 -5.6 
Initial luminosity Linit 1026 cm-2s-1 30  40  50  80  155  215  336  
Events per bunch-bunch crossing µ  … 0.08 0.10 0.13 0.21 0.40 0.55 0.86 
Average/initial luminosity % 40 50 60 62 56 58 60 
Average store luminosity Lavg 1026 cm-2s-1 12 20 30 50 87 125 200 
Time in store % 48 53 59 68 65 60 60 
Max. luminosity/week µb-1 380 650 1000 2200 3000 4530 7260 
Min. luminosity/week µb-1       3000 3000 
L within |z|<10 cm, q = 0 mrad, r0/rq * %      39/39 39/39 
L within |z|<10 cm, q = 2 mrad, r0/rq * %      31/81 31/81 

* Luminosity L(z,q) within vertex cut |z| for full crossing angle q. The values r0/rq are r0 = L(z,q)/L(10 m,0) and rq = L(z,q)/L(10 m,q). 
 
Table 3: Demonstrated and max projected luminosities and polarization for p­+p­ and p­+Au runs at 100 GeV. 

  p­+p­ p­+Au 
Parameter Unit FY2008 2009 2012 2015 2024E FY2015 2024E 

No of colliding bunches kb … 109 109 109 111 111 111 111 
Protons/bunch, initial Nb 1011 1.5 1.3 1.6 2.25 2.5 225/1.6 250/2.4 
Average beam current/ring Iavg mA 198 179 214 312 347 313/176 348/266 
Stored beam energy  MJ 0.25 0.23 0.27 0.40 0.45 0.40/0.56 0.45/0.84 
Envelope function at IP b* m 1.00 0.70 0.85 0.85 0.85 0.85/0.70 0.85/0.70 
Hourglass factor H … 0.77 0.72 0.74 0.75 0.84 0.72 0.72 
Beam-beam parameter x/IP 10-3 -5.3 -6.3 -5.8 -9.7 -11.7 -5.3/-4.1 -11.7/-4.3 

Initial luminosity Linit 1030 cm-2s-1 35 50 46 115 176 0.88 1.68 
Events per bunch-bunch crossing µ  … 0.2 0.3 0.3 0.7 1.1   
Average/initial luminosity % 65 56 71 55 57 51 54 
Average store luminosity Lavg 1030 cm-2s-1 23 28 33 63 100 0.45 0.90 
Time in store % 60 53 59 64 60 65 60 
Max. luminosity/week pb-1 7.5  8.3  9.3  25  36  0.140 0.326 
Min. luminosity/week pb-1       25  0.140 
L within |z|<10 cm, q = 0 mrad, r0/rq * %     22/22  29/29 
L within |z|<10 cm, q = 2 mrad, r0/rq * %     19/69  24/75 
AGS extraction, Pmax % 55 65 72 68 68 68 68 
RHIC store average, Pmax % 45 56 59 57 60 60 60 
RHIC store average, Pmin %         57   57 

* Luminosity L(z,q) within vertex cut |z| for full crossing angle q. The values r0/rq are r0 = L(z,q)/L(10 m,0) and rq = L(z,q)/L(10 m,q). 
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This note discusses in Part I general constraints and past performance. Constraints arise from the times 

needed for cryogenic cool-down, machine set-up and beam commissioning. In Part II an outlook is given 

for possible running modes in Run-23 through Run-25. 

 
In the following all quoted luminosities are delivered luminosities. Recorded luminosities are smaller due to 
vertex cuts, detector uptime, and other considerations. An estimate of how much of the delivered luminosity 
can be recorded must be made by every experiment individually. Quoted beam polarization numbers are 
intensity-averaged and time-averaged as measured by the hydrogen jet. The luminosity-weighted polarization 
functions and figures of merit can be calculated from the center polarization and polarization profile 
parameters.  
 

Part I – General Constraints and Past Performance 
 

Time of cryogenic operation – After a shutdown the two RHIC rings are usually at room temperature. 

After bringing the rings to 50 K over approximately 1 month, 0.5 weeks will be required to cool them down 

from 50 K to 4 K. At the end of the run 0.5 weeks are required for a controlled turn-off of refrigerator 

operation.  

Typically, when starting the run, we plan for about 1 week of machine set-up (no dedicated time for 

experiments) with the goal of establishing collisions, and about 0.5 weeks machine ramp-up (8 h/night for 

experiments) after which stable operation can be provided with integrated luminosities that are a fraction 

of the maximum luminosity goals. The set-up and ramp-up period for polarized protons would be up to 1 

week longer than for ions to allow for the set-up of polarimetry, snakes, and rotators. During the ramp-up 

period detector set-up can occur. Expected commissioning efforts vary with the operating mode.  

Higher weekly luminosities and polarization are achievable with a continuous development effort in the 

following weeks. We propose to use the day shifts from Monday to Friday for this effort as needed and 

coordinated with sPHENIX and STAR. The luminosity or polarization development efforts should stop 

when insurmountable limits, posed by either the current machine or detector configuration, are reached.  

After a running mode has been established, the collision energy in the same mode can be changed in about 

a day. A change of the polarization orientation at any or all of the experiments requires 1-2 shifts. 

 

24 weeks of RHIC refrigerator operation in FY 2023 could be scheduled in the following way: 
 
Cool-down from 50 K to 4 K   0.5 weeks 
 
Set-up (Au+Au)     1.0 weeks (no dedicated time for experiments) 
Ramp-up and experimenter set-up (Au+Au)  0.5 weeks  
 
Mode 1A (100 GeV/nucleon)   21.5 weeks 
 
Controlled refrigerator turn-off   0.5 weeks 
 
Past performance – Table 1 shows the achieved luminosities for all ion combinations at the highest energy, 

and for polarized protons at 100 and 255 GeV. The time in store was 65% of the total time for Au+Au (Run-

16) and 62% for p­+p­ (255 GeV, Run-17). Note that the total time includes all interruptions such as 

ramping, set-up, maintenance, machine development, accelerator physics experiments, and failures. A 

Year Species Max Lumi/Week 28 weeks Year Total
2023 Au+Au 4.53 /nb 0.1/pb

2024
p+p 36 /pb 768/pb

p+Au 0.326 /pb 2.17/pb
2025 Au+Au 7.26 /nb 0.2/pb

770/pb
Integrated Luminosity

28


