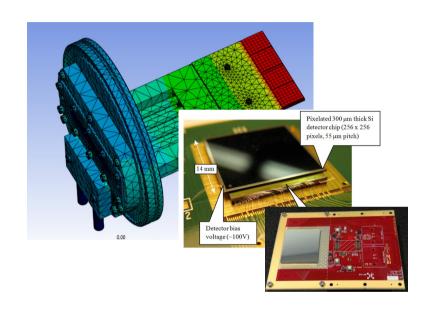
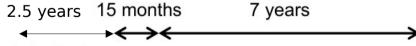
Current Project

2.5 years. R & D. **£3M**

WP1 MAPS, Central Det (Bham, DL, + ...)


WP2 Timepix (Glasgow, DL)


WP3 Polarimetry (York)

WP2 Timepix

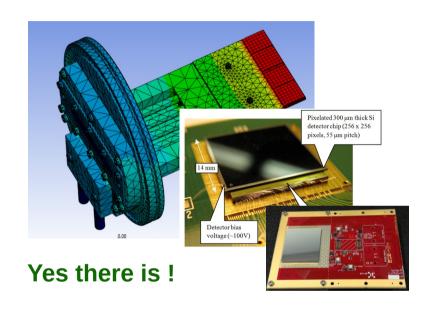
Is there a role for Timepix at EIC?

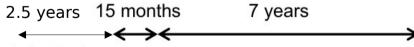
D1. Report by Xmas ... summarised here.

NOTE: US Financial Years (FY) = Oct-Sep

	FY19	FY20	FY2I	FY22	FY23	FY24	FY25	FY26	FY27	FY28	FY29	FY30	FY3I	FY32	FY33	FY34	FY35	FY36
Critical Decisions		D-0(A) ec 2019	CD-I(A Jun 2021			D-2/3A lan 2024	CD-3 Apr 2025							Appro		The second second		

Current Project


2.5 years. R & D. **£3M**


WP1 MAPS, Central Det (Bham, DL, + ...)
WP2 **Timepix** (Glasgow, DL)

WP3 Polarimetry (York)

WP2 Timepix

Is there a role for Timepix at EIC?
D1. Report by Xmas ... summarised here.

NOTE: US Financial Years (FY) = Oct-Sep

	FY19	FY20	FY2I	FY22	FY23	FY24	FY25	FY26	FY27	FY28	FY29	FY30	FY3I	FY32	FY33	FY34	FY35	FY36
Critical Decisions		D-0(A) ec 2019	CD-1(A Jun 2021			D-2/3A an 2024	CD-3 Apr 2025							Appro		The second second		

Current Project

2.5 years. R & D. **£3M**

WP1 MAPS, Central Det (Bham, DL, + ...) WP2 **Timepix** (Glasgow, DL)

WP3 Polarimetry (York)

WP2 Timepix

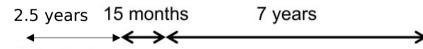
Is there a role for Timepix at EIC?

D1. Report by Xmas ... summarised here.

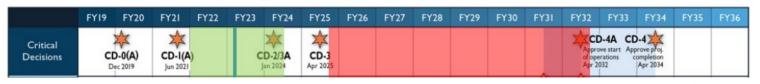
New proposal

7 years. Design and Construction. £35M

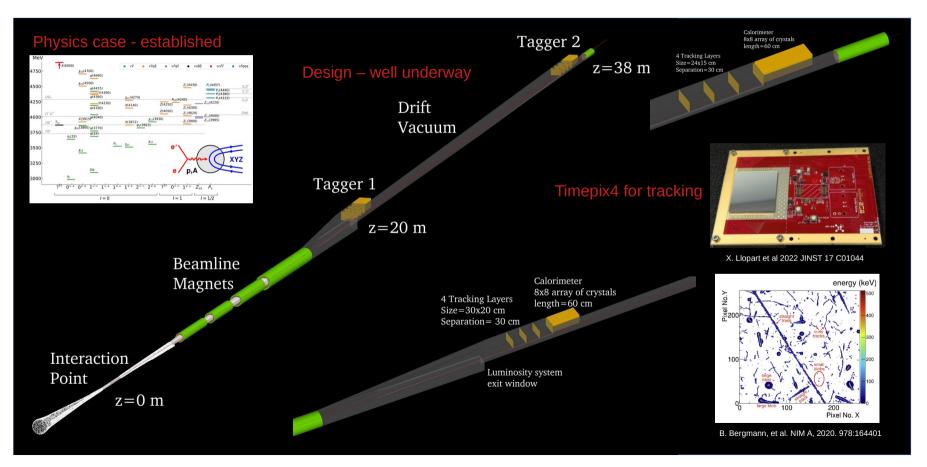
WP1 MAPS, Central Det (Bham, DL, + ...)

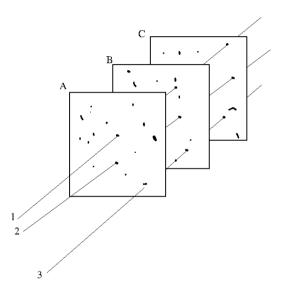

WP2 **Timepix** (Glasgow, DL, +)

WP3 Polarimetry (York)


WP4 Accelerator (Cl, DL, +)

WP2 Low Q Tagger / Timepix


Design and build Low Q Tagger (tracker)


NOTE: US Financial Years (FY) = Oct-Sep

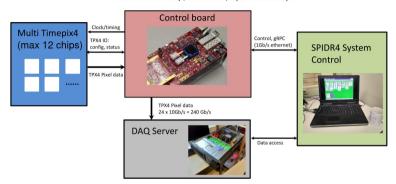
• Can we find a role for Timepix at EIC? Yes we can. It's the **Far Backward Tagger** (Low Q² Tagger).

- Calorimeter not required for Low Q² Tagger removed from simulation and design
- What's required of a pixel tracker?
- Position resolution good enough for physics needs (~50um adequate)
- **Segmentation** good enough to separate out tracks. (~50x50um pixels)
- Vacuum compatibility. Cooling. Readout. Beam impedance.
- Rate capability
 - In a bunch crossing:
 - ~10 electrons tracks from the interaction point almost all brem.
 - These are unrejectable! Need physics exclusivity, kinematics ...
 - 12ns between bunches => pixel hit rate per layer = 2.5 GHz
 - Assume same rate from synchrotron BG.
 - Total rate per layer = 5GHz. At 64 bits per pixel = 320 Gb/s. Very big. Timepix4 + SPIDR4 can do this.
 - Use **FPGA based clustering** to find MIPS. Store only MIPS clusters (x, y, time, energy, width) = 80 bits
 - 2 tagger, 4 layers, Trigger Rate 500kHZ => Rate to DAQ = 3.2 Gb/s. Very manageable.

Timepix3

SAMTEC connectors on custom flange PCB with TSV

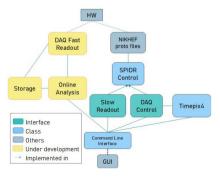
Developed by:


Glasgow Group: Ken Livingston, Dima Manuelski, Simon Gardner Daresbury Group: Mos Kogimtzis, James Lawson, Carl Unsworth

Availability of Timepix4 for tracking applications is driving hardware and software development.

SPIDR4 + DAQ tools look set to be the de facto standard Closest to *off-the-shelf* technology

Timepix4


SPIDR4: Multi chip, 2 x 10 Gb/s per TPX4 chip

Martin Fransen (martinfr at nikhef.nl), Gridpix brainstorm April 2020

18

Build your own DAQ

You can use this software also with a hardware read-out system different from SPIDR4. You only have to write the following 4 methods to:

- Read a Timepix4 Register
 - Operations to read a register through SC/I2C Takes register address and returns vector of bytes
- Write a Timepix4 Register


Operations to write a register through SC/I2C Takes register address and vector of bytes

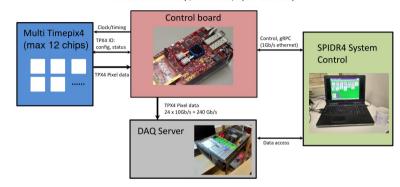
- · Configure the DAQ
 - Operations to configure the control board Flexibility: desired configuration as xml file
- Read DAQ Monitoring Information
 Operations to read back the control board
 Flexibility returning configuration as xml file

N.V. Biesuz - Development of Readout Software for Timepix4-based Detectors - 16^{4} November 10 November 10 November 11 November 12 Nov

Timepix3

SAMTEC connectors on custom flange PCB with TSV

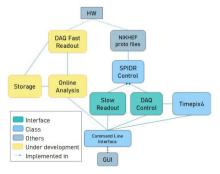
Developed by:


Glasgow Group: Ken Livingston, Dima Manuelski, Simon Gardner Daresbury Group: Mos Kogimtzis, James Lawson, Carl Unsworth

Availability of Timepix4 for tracking applications is driving hardware and software development.

SPIDR4 + DAQ tools look set to be the de facto standard Closest to *off-the-shelf* technology

Timepix4


SPIDR4: Multi chip, 2 x 10 Gb/s per TPX4 chip

Martin Fransen (martinfr at nikhef.nl), Gridpix brainstorm April 2020

18

Build your own DAQ

You can use this software also with a hardware read-out system different from SPIDR4. You only have to write the following 4 methods to:

- Read a Timepix4 Register
 - Operations to read a register through SC/I2C Takes register address and returns vector of bytes
- Write a Timepix4 Register

Operations to write a register through SC/I2C Takes register address and vector of bytes

- Configure the DAQ
 - Operations to configure the control board Flexibility: desired configuration as xml file
- Read DAQ Monitoring Information
 Operations to read back the control board
 Flexibility returning configuration as xml file

744774

V. Biesuz - Development of Readout Software for Timepix4-based Detectors - 16th November 2022

WP2 - Timepix or something else

An attempt to compare apples with bananas please let me know better.

	Requirement	Timepix4	AC-LGAD	MAPS
Readout	_	SPIDR4	EICROC	Direct ?
Pixel Size (μm)	$\sim 50 \times 50$	55 × 55	500 × 500	20 × 20
Sensor thickness (μ m)	·	100	50	20
Detector size (pixels)		512 × 448	64 × 64	?
Detector area (cm ²)	_	6.94	10.24	?
Layer Area (cm ²)	~100	83 (3x4 Timepix4)	92 (3x3)	?
Power consumption (W/cm ²)	As low as possible	1.0	0.4	0.15
Timing resolution (ns)	< 12	0.2	0.03	9
Minimum threshold (fC)	_	1.2	2.0	0.48
Individual pixel thresholds	8. 	Yes	Yes	No
Pixel hits in MIPS cluster	_	3	30	5 ?
Rate (various units)				
Hits/pixel/s (max)	$\sim 7 imes 10^3$	$\sim 10.7 \times 10^{3}$?	?
Hits/detector/s (max)	$\sim 1.7 imes 10^9$	$\sim 2.5 \times 10^9$?	?
Bits/detector/s (max)	$\sim 27.0 \times 10^{9}$	$\sim 160 imes 10^9$?	?
Bits/layer/s (integrated)	\sim 320 $ imes$ 10 9	$> 240 \times 10^9$?	

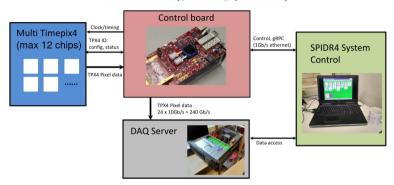
Used elsewhere in ePIC

MAPS: for Central Tracker.

Great pos. resolution, very application specific, poor timing, Rate capability? Low power. **Much development needed**.

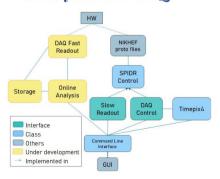
AC-LGAD for Roman Pots

Very good timing, good pos resolution, big clusters, Rate? Medium power. Much development needed.


Timepix4 + SPIDR4

Adequate timing, good pos resolution, good cluster size, high rate, high(ish) power. Available already.

Hybrid upgrade sensor from standard Si to Inverse LGAD (<30ps).


Timepix4

SPIDR4: Multi chip, 2 x 10 Gb/s per TPX4 chip

Martin Fransen (martinfr at nikhef.nl), Gridpix brainstorm April 2020

Build your own DAO

You can use this software also with a hardware read-out system different from SPIDR4.
You only have to write the following 4 methods to:

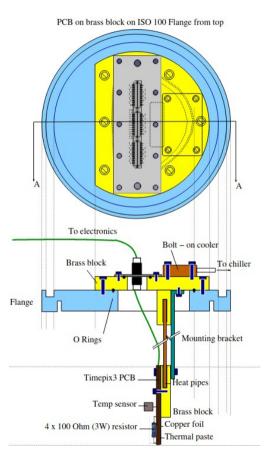
• Read a Timepix4 Register

Operations to read a register through SC/I2C Takes register address and returns vector of bytes

Write a Timepix4 Register

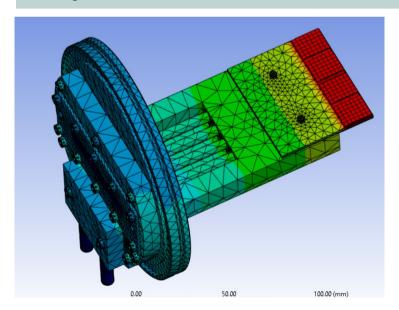
Operations to write a register through SC/I2C Takes register address and vector of bytes

· Configure the DAQ


Operations to configure the control board Flexibility: desired configuration as xml file

• Read DAQ Monitoring Information

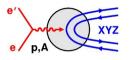
Operations to read back the control board Flexibility returning configuration as xml file

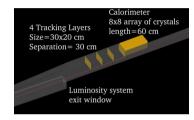

Rissurs - Development of Revious Software for Timeriva-hased Detectors - 16th Navember 2023

.. but timepix3 DAQ readout and test rig still essential for development

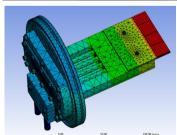
Real **connectors**, vacuum **feedthroughs**, **heat pipes**PCB with **temp sensors**. **Resistors** to mock up ASIC heat.
Developed in CAD as **special flange** for ISO 100 mount.
Currently in Glasgow workshop.

To be tested in 10-5 mbar with **external mounted chiller**. Cooling **modelled in ANSYS**.


Summary


Strong physics case for low Q² tagger.

Design implemented needs more simulation and adjustment


Timepix4 + SPIDR4 looks like the best solution (but other options still being evaluated)

Development for structure, cooling, beamline Continue with Timepix3 setup.

Deadline 10 Feb 2023

We hope to say:

Far Backward Tagger is now part of the design.

We will lead the development of the pixel based tracker, working with Far Backward Group.

Cost and design based on Timepix4 + SPIDR4

New proposal

7 years. Design and Construction. £35M

WP1 MAPS, Central Det (Bham, DL, + ...)
WP2 **Timepix** (Glasgow, DL, +)
WP3 Polarimetry (York)

WP4 Accelerator (Cl, DL, +)

WP2 Low Q Tagger / Timepix

Design and build Low Q Tagger (tracker)

FY19 FY20 FY21 FY22 FY23 FY24 FY25 FY26 FY27 FY28 FY29 FY30 FY31 FY32 FY33 FY34 FY35 FY36

Critical Decisions CD-0(A) CD-1(A) CD-1(A) CD-2/3A CD-3 Jan 2024 Apr 2025 CD-2/3A Apr 2025 CD-2/3A Apr 2025 CD-2/3A CD-3 CD-3/4 CD-3/4