Performance benchmarks for SciGlass ECal

Renee Fatemi, Dmitry Kalinkin

University of Kentucky

State of common benchmarks framework

ePIC had inherited benchmarks from Athena:

- » https://eicweb.phy.anl.gov/EIC/benchmarks/detector_benchmarks
- » https://eicweb.phy.anl.gov/EIC/benchmarks/physics_benchmarks
- » https://eicweb.phy.anl.gov/EIC/benchmarks/reconstruction_benchmarks
 Something to learn from!
- » Running on the grid after each software change (Continious Integration)
- » Transparent procedures source code available
- » Unfortunately, analysis and interface are unsophisticated
- » Not friendly to deadline-driven development no user adoption

A use case: detector optimization

Example toy optimization for 2 objectives:

current design:

a design with "optimal" resolution:

Real improvement depends on having rous and robust benchmarks

Energy resolutions from a Fun4All reproduced in DD4hep

- » Disabled SiPM statistics and removed 1 mm carbon fiber around towers in Fun4All
- » Removed a 0.25 mm thin carbon fiber wrap and wedge walls in DD4hep
- » Consistent gausian peak widths for electrons

π rejection for SciGlass in ECCE calorimeter

Figure 20: Pion rejection factor for the different ECals with $E/p>1-1.6\,\sigma_e/E$ or based on a $\varepsilon_e\approx95\%$ cut.

arXiv:2207.09437v1

https://indico.jlab.org/event/546/ contributions/9980/attachments/7933/ 11151/machine_learning_hall_ac_2022_ phelps.pdf (was shown at 2nd EIC AI/ML Workshop)

Rejection at $\epsilon = 95\%$ is given in red points

State of the pion rejection study

State of the pion rejection study

Future steps

- » Implement clustering for Sci-Glass
- » Implement remaining benchmarks according to the charge
- » Study Geant4 material simulation: X_0 , λ_{int}
- » Implement realistic readout in ElCrecon
 - Optical statistics (contribution to the 1/E term)
- » Porting Imaging/Sciglass analyses to the benchmarks infrastructure?

Backup

- » Switch from ePIC geometry version from 22.11.1 to 22.12.0
- » Enabled Birks effect correction (relevant for $\boldsymbol{\pi}$ rejection)

Pion rejection: breakdown

W University of Kentucky.

https://indico.bnl.gov/event/17074/contributions/68207/attachments/43231/72716/dd4hep_fun4all_cmp.pdf

https:

//indico.bnl.gov/event/17706/contributions/70849/attachments/44499/75685/ SHA256E-s5115227--974190a22dcbaa41b8860f33dc2db97d7f6d5980359db3a641c6b13994f6e4 pdf

https://indico.bnl.gov/event/17844/contributions/71396/attachments/44966/75855/pi_rejection.pdf

A beam-test simulation wasn't reproduced in DD4hep

https://indico.bnl.gov/event/17710/

- » Simulation for 21x21 grid array
- » A private Geant4 framework that is also used for beam-test simulation
- » DD4hep simulation setup with EcalNegative geometry for SciGlass
- » Here, a slightly different definition of the rejection factor is used: (TPR)/(FPR) (instead of 1/(FPR)