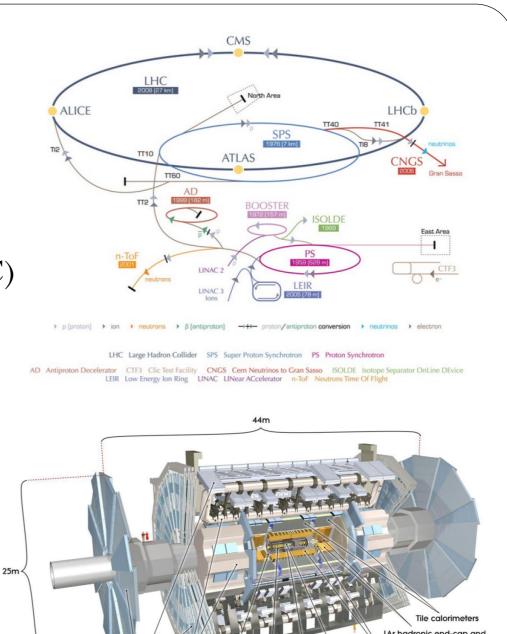
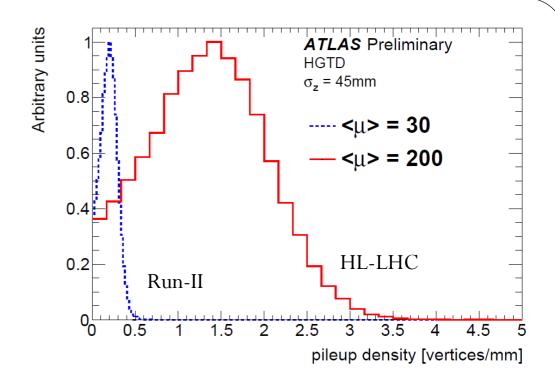
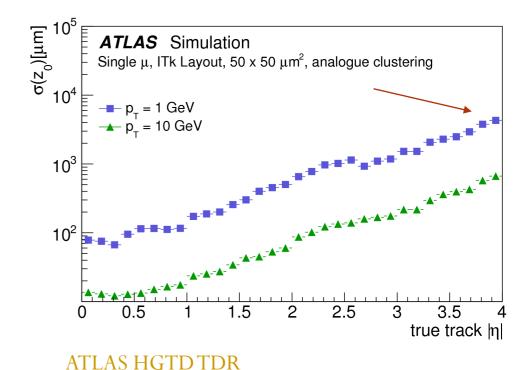
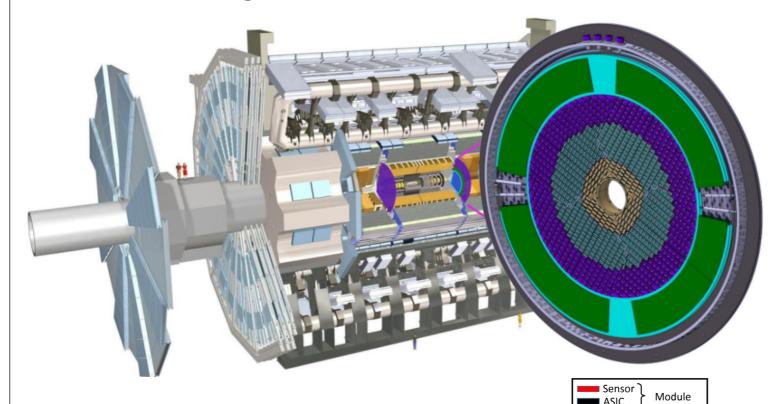
Lessons learned from the HGTD sensor R&D

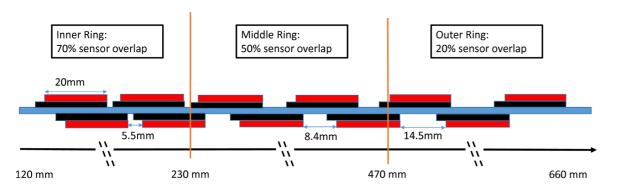
Dr. Simone M. Mazza (SCIPP, UC Santa Cruz)
For the SCIPP group




LHC high luminosity and ATLAS


- LHC had very successful runs since the start of collisions in 2010
 - Discovery of the Higgs boson, SM measurements, search for SUSY and exotic particles
- It will be upgraded in 2027 to High Luminosity LHC (HL-LHC)
 Instantaneous luminosity will be ~3 times past run conditions
 From L = 2.5E34 cm⁻²s⁻¹ to L = 7.5E34 cm⁻²s⁻¹
- To maintain performance the ATLAS detector will be upgraded (phase-II upgrade) for HL-LHC
 - The inner detector will be replaced (ITk project)
 - New readout electronics for EM and Hadronic calorimeters
 - Upgraded muon spectrometer
 - TDAQ system will be completely re-worked
- New end-cap pixel timing detector
 - High granularity timing detector, **HGTD**
 - <u>HĞTĎT</u>DR


HGTD motivation


- With increased instantaneous luminosity the biggest challenge will be the **Pileup**
 - Beam profile $\sigma_z = 50 \text{ mm}$, $\sigma_t = 180 \text{ ps}$, 1.44 vertex/mm
 - Pileup will be ~6 times higher than current pileup
 - Especially troublesome in the forward region
- The new ITk tracker will have a better position resolution and extended pseudo-rapidity
 - However Z0 (impact parameter) resolution for end-cap tracks at $\eta > 3$ is order of \sim mm
- With timing information from HGTD the pileup effects can be reduced

HGTD layout

Dr. Simone M. Mazza - University of California Santa Cruz

Structure

- Two double-instrumented disks in the end-cap
- Rotated by 15° in opposite directions to avoid gaps
- $2.4 < |\eta| < 4$, 120 mm < r < 640 mm
- Structure is divided in concentric 3 rings with different active sensor overlap (70%, 50%, 20%)
- Number of hits per tracks: 2.6, 2.4, 2

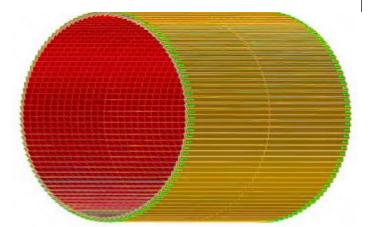
Requirements

- Time resolution < 30-50 ps per track, < 35-70 ps per hit (start-finish)
- Occupancy < 10%
- Fill factor > 85%
- Total power dissipation $< 500 \frac{mW}{cm^2}$
 - $<100 \, \frac{mW}{cm^2}$ sensor-only
- Radiation damage: 2.5E15 N_{eq}/cm² and 2 MGy

HGTD - EPIC comparison

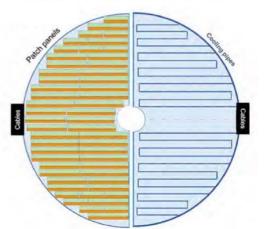
HGTD

Pseudo-rapidity coverage	$2.4 < \eta < 4.0$
Thickness in z	75 mm (+50 mm moderator)
Position of active layers in z	±3.5 m
Weight per end-cap	350 kg
Radial extension:	
Total	110 mm < r < 1000 mm
Active area	120 mm < r < 640 mm
Pad size	$1.3\mathrm{mm} \times 1.3\mathrm{mm}$
Active sensor thickness	50 μm
Number of channels	3.6 M
Active area	$6.4\mathrm{m}^2$
Module size	30×15 pads $(4 \text{ cm} \times 2 \text{ cm})$
Modules	8032
Collected charge per hit	> 4.0 fC
Average number of hits per track	
$2.4 < \eta < 2.7 (640 \mathrm{mm} > r > 470 \mathrm{mm})$	≈2.0
$2.7 < \eta < 3.5 (470 \mathrm{mm} > r > 230 \mathrm{mm})$	≈2.4
$3.5 < \eta < 4.0 (230 \mathrm{mm} > r > 120 \mathrm{mm})$	≈2.6
Average time resolution per hit (start and end of operational lifetime)	
$2.4 < \eta < 4.0$	pprox 35 ps (start), $pprox$ 70 ps (end)
Average time resolution per track (start and end of operational lifetime)	$pprox 30\mathrm{ps}$ (start), $pprox 50\mathrm{ps}$ (end)


Table 2.1: Main parameters of the HGTD.

Active Area EPIC /HGTD = 2 Linear Pixel size EPIC/HGTD = 0.4 to 0.8 Electronic channel density EPIC/HGTD = 3.4 to 6.8 Position resolution requirement EPIC/HGTD = 1/30 Time resolution EPIC/HGTD = 0.5 to 1

EPIC


Barrel AC-LGAD tracker (ToF):

Pixel size 0.5mm by 1.0mm. 10.9 m² active area.

Hadron endcap AC-LGAD tracker (ToF):

Pixel size 0.5mm by 0.5mm. 2.22 m² active area.

EPIC is more ambitious than HGTD

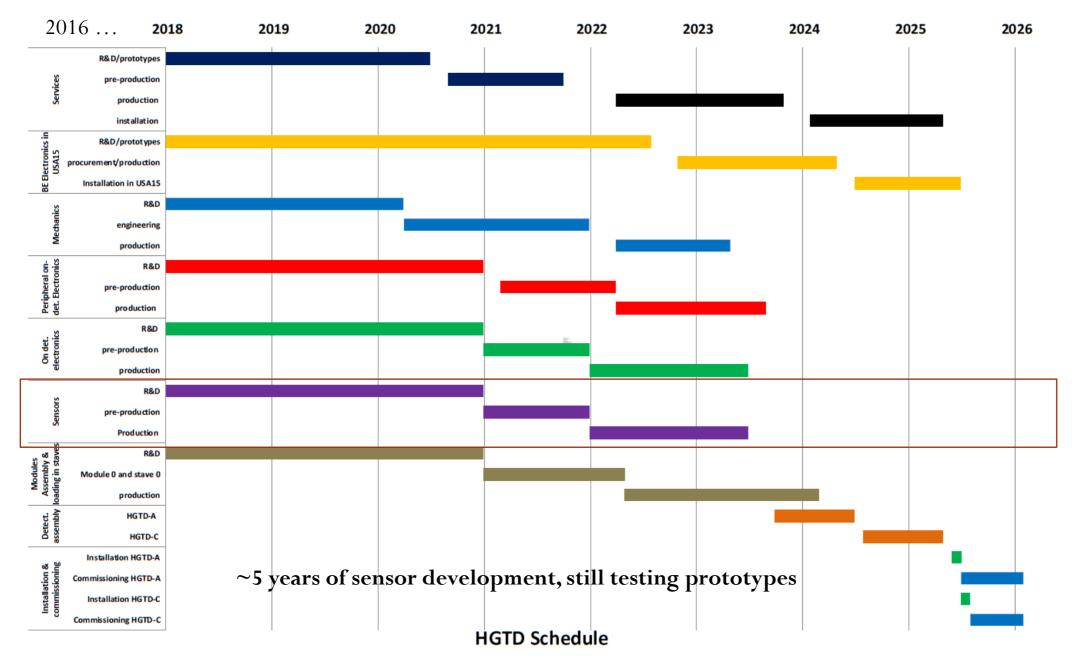


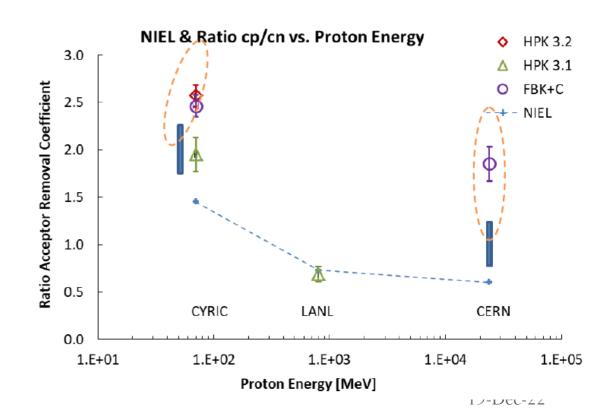
Figure 6.1: Gantt chart showing the schedule of the various activities in the HGTD project.

HGTD sensor prototype runs

- Several HGTD LGAD R&D runs from different vendors
 - Total of 7 vendors, most responded to the market survey
 - Multiple production per vendor (4x HPK, FBK, 3x CNM, NDL, IMEI, etc...)
- Many different types tested: Boron + Carbon, deep gain layer, Gallium, thin (30um) substrate
 - Some solutions worked some didn't
- Prototype arrays size up to full size (15x15)

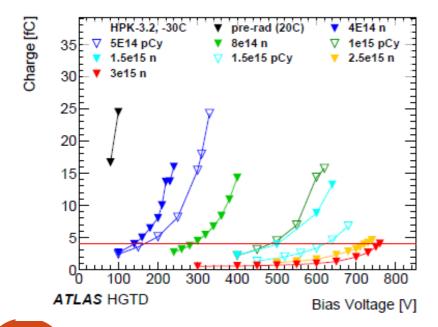
Manu-	Wafer	Thick-	С	Array	Array	Array	UBM
facturer	Size [inch]	ness [µm]	Implant	5×5	15×15	30×15	
CNM	4-6	30 - 300	Х	Х	(x)	(x)	
FBK	6	(50) 60 - 300	X	X			
HPK	6	20 - 80		X	X	(x)	X
BNL	4	50					
Micron	4	100 - 300					
NDL	6	33 (50)		X			

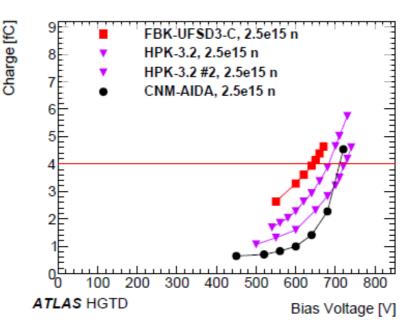
IMEI...

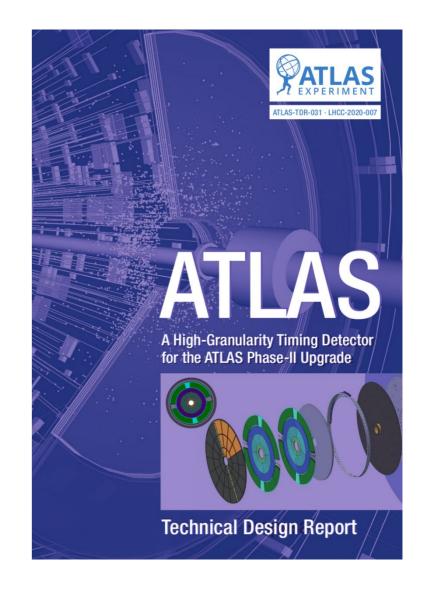

Manu-	Name	Thickness	Gain layer	С	Gain layer	Gain layer
facturer		[µm]	dopant	implant	depth [µm]	depletion [V]
HPK	HPK-3.1	50	Boron	No	1.6	40
HPK	HPK-3.2	50	Boron	No	2.2	55
FBK	FBK-UFSD3-C	60	Boron	Yes	0.6	20
CNM	CNM-AIDA1/2	50	Boron	No	1.0	45
NDL	NDL-33µm	33	Boron	No	1.0	20
Manu-	Name	Full	V_{BD}	Nominal	Nominal	Max. Array
facturer		depletion [V]	-30 °C [V]	IP [μm]	SE [µm]	Size
HPK	HPK-3.1	50	200	30-95	200-500	15 × 15
HPK	HPK-3.2	65	70	30-95	200-500	15×15
FBK	FBK-UFSD3-C	25	170	37	200-500	5×5
CNM	CNM-AIDA1/2	50	220/50	37-57	200-500	5×5
NDL	NDL-33µm	35	70	55	450	15×15

HGTD sensor irradiations

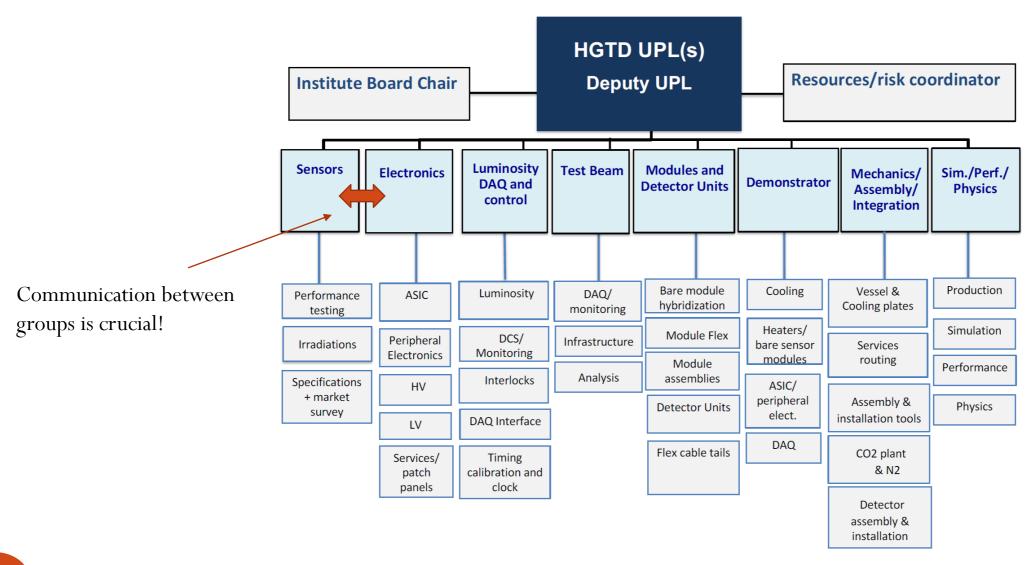
- Irradiation campaigns done for most prototype runs
- Irradiation with neutrons, protons of different energies and gammas
- Discovered that **NIEL factor do not work** for acceptor removal in LGADs


Facility &	Particle	Hardness	TID [MGy] /	Max. Fluence	Max. TID	LGAD Types
Abbreviation	Туре	Factor	$10^{15} \rm n_{eq} cm^{-2}$	$[10^{15} \rm n_{eq} cm^{-2}]$	[MGy]	Irradiated
JSI Ljubljana (n)	≈1 MeV n	0.9	0.01	6	0.06	all
CYRIC (pCY)	70 MeV p	1.5	0.81	2.5	4.0	HPK-3.1/3.2, NDL
						FBK-UFSD3-C
Los Alamos (pLA)	800 MeV p	0.7	0.43	6	0.4	early prototypes
CERN PS (pPS)	23 GeV p	0.6	0.44	6	2.7	early prototypes


Table 5.4: Irradiation facilities and parameters and maximum achieved fluence and TID, as well as LGAD types irradiated.

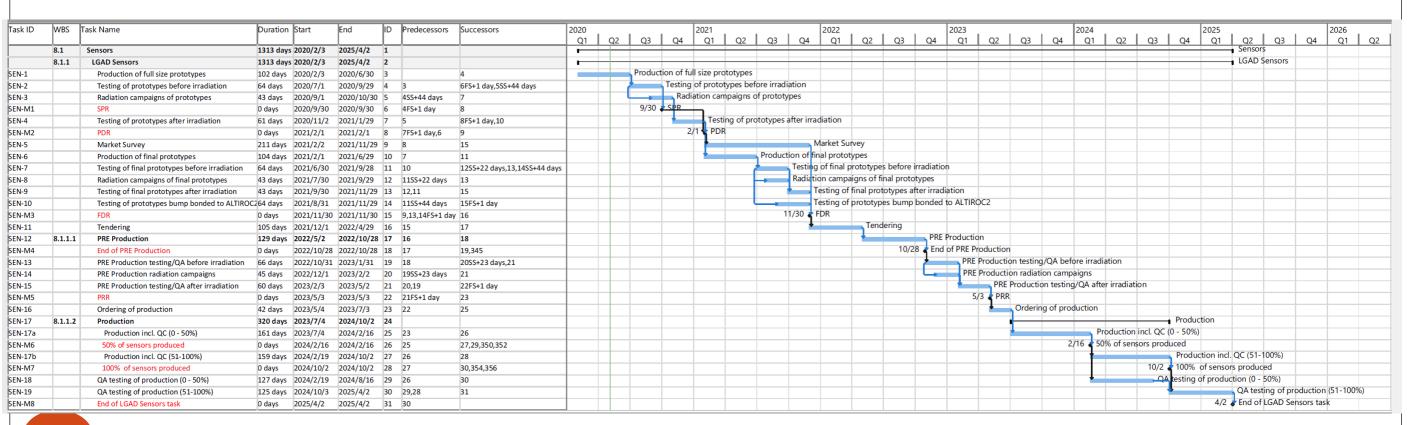


HGTD TDR and sensor R&D status


- HGTDTDR published in 2020
 - Was already delayed 1 year because of issues with power consumption and radiation damage
- 3 vendors fully characterized (+1 not added, NDL, because of last minute results), each fulfilling HGTD requirements
 - HPK most promising since it could cover all production
 - Many plots comparing CC, time resolution, power, current etc...
- However issues arose after the TDR: single event burnout and higher damage from proton irradiation

HGTD organization

Conclusions



- **HGTD** relies on a new technology (LGADs) that took a long time to characterize
 - Over 5 years of R&D phase, one could say it is still ongoing
- Many setbacks along the way that were solved thanks to diversifying efforts
 - TDR contained quite detailed studies, after it we still encountered crucial issues
- Several group involved in the sensor R&D, at least 3 actively testing sensors at the beginning and more now
 - Advantage of shared R&D with CMS ETL
- Multiple vendors, several productions per vendor, twice a year TB campaign
- EPIC relies on a new technology as well (AC-LGADs)
 - LGAD part quite understood but AC readout still to be fully characterized
 - Many more variables to optimize than in LGADs
 - Need comparisons and full picture to take decisions on parameters \rightarrow there's progress but not quite there yet!
 - Strip sensors studied twice at TB (barrel), not much on pixels (end-cap)
- **Diversification** (more vendors, more technologies) might solve **future deal breaker issues** (e.g. for HGTD was SEB)
- Yield and uniformity of productions to be addressed
- Irradiation is much lower in EPIC and not a source of concern, but it's stills something to check: we don't completely understand the effect in AC-LGADs. Especially if not homogeneous and with protons.

Backup

Sensors market survey and production

- Market survey will start Q1 2021 and end in Q4 2021 (FDR due Q4 2021)
 - SPR Q4 2020 and PDR in Q1 2021
- Then pre-production will start in Q2 2022 until Q4 2022
 - Following pre-production testing and Q/A before and after irradiation
 - PRR in Q2 2023
- Production Q3 2023 to Q4 2024
 - First half of production ready Q1 2024, Q/A during second part of production

Country/FA	Institutes involved in HGTD R&D
Brazil	USP
CERN	CERN
China	IHEP, NJU, USTC, SINANO, SJTU
France	IJCLab, LPC, LPNHE, OMEGA
Germany	Mainz, Giessen, Goettingen*
JINR	JINR
Morocco	UIT, UH2C, UM5R, UMP
Russia	MEPhI
Slovenia	JSI
Spain	IFAE
Sweden	KTH
Taiwan	AS, NTHU
USA*	BNL, SLAC, SMU, UCSC, SUNYSB

Table 15.1: List of countries/Funding Agencies and corresponding Institutes contributing to HGTD R&D. OMEGA and SINANO are ATLAS Technical Associate Institutes. *Goettingen and USA Institutes will only be involved in the R&D phase.

R&D Activities/WG	Institutes
Sensors	BNL, CERN, Goettingen, IFAE, IHEP, JINR, JSI, USTC, USP, UCSC
Electronics	AS, Giessen, IFAE, IHEP, IJCLab, JINR, KTH, LPC, NJU, NTHU, Omega, SLAC, SMU, SUNYSB, UIT, UH2C, UM5R, UMP, USTC
Luminosity, DAQ and Control	IHEP, KTH, Giessen, UCSC, UIT, UH2C, UM5R, UMP
Test beams and demonstrator	All Institutes
Module assembly and loading	BNL, IFAE, IHEP, IJCLab, JINR, LPNHE, Mainz, UIT, UH2C, UM5R, UMP, USTC, SINANO
Mechanics, assembly and installation	CERN, IHEP, IJCLab, JINR, LPNHE, MEPhI
Simulation/Performance/Physics	All Institutes

Table 15.2: List of R&D activites and participating Institutes. OMEGA and SINANO are ATLAS Technical Associate Institutes. US groups will only be involved in the R&D phase. Goettingen is only involved in the Sensors R&D phase.

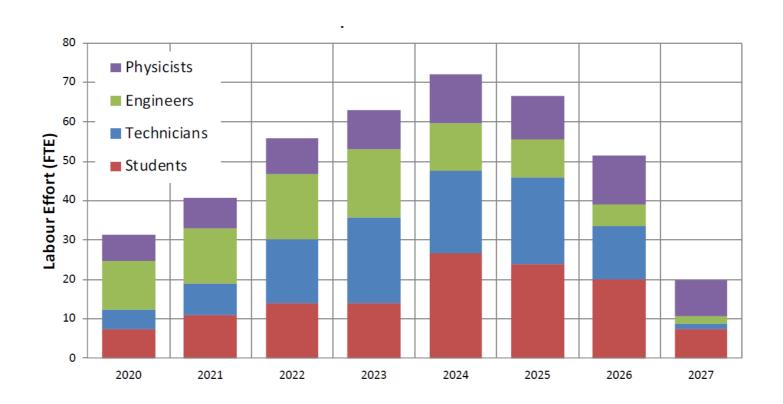


Figure 15.11: Required effort (in FTE) needed per labour type (physicists, engineers, students, technicians) over the lifetime of the project.

Dr. Simone M. Mazza 19-Dec-22

Critical issues and setbacks in HGTD (non-complete)

- Power dissipation
 - Lead to **TDR 1 year delay** and restructuring of the wheels (3 rings instead of 2)
- Collected charge needed for the ASIC
 - CC not enough after irradiation, 3 rings structure needed. 30um devices (less base CC) not feasible even though the time resolution was better
- Yield from full sensor production
 - Yield was too low for 30x15 arrays, needed to reduce the sensor size to 15x15
- Irradiation gradient
 - Irradiation difference between one edge and the other of the sensor, fine for 15x15 (not for 30x15)

After the TDR

- Damage from proton was higher (up to factor 3) than neutron damage
 - Discovered late because of beam line availability
- Single event burnout (SEB), lowering voltage limits \rightarrow HPK is not a viable vendor anymore
 - Several **new prototype runs with HPK (still ongoing)** to try and find a solution