
dRICH Reconstruction Update

Christopher Dilks dRICH Meeting 14 December 2022

ElCrecon (JANA-based) dRICH Reconstruction

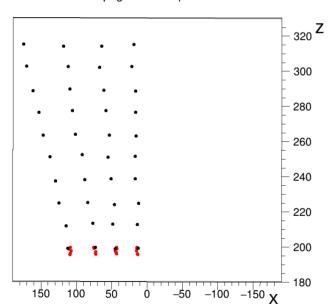
External EIC-recon Independent code (upstream, downstream, etc.)

<u>Collection</u> of objects, such as sensor hits or reconstructed track points

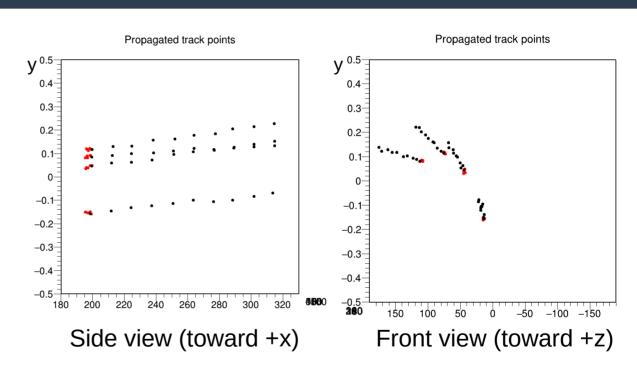
Factory, that turns input collection(s) into a single output collections. Typically comes with a JANA-independent algorithm

Service: define once, used in many places; handles common needs such as geometry and I/O

Blocker

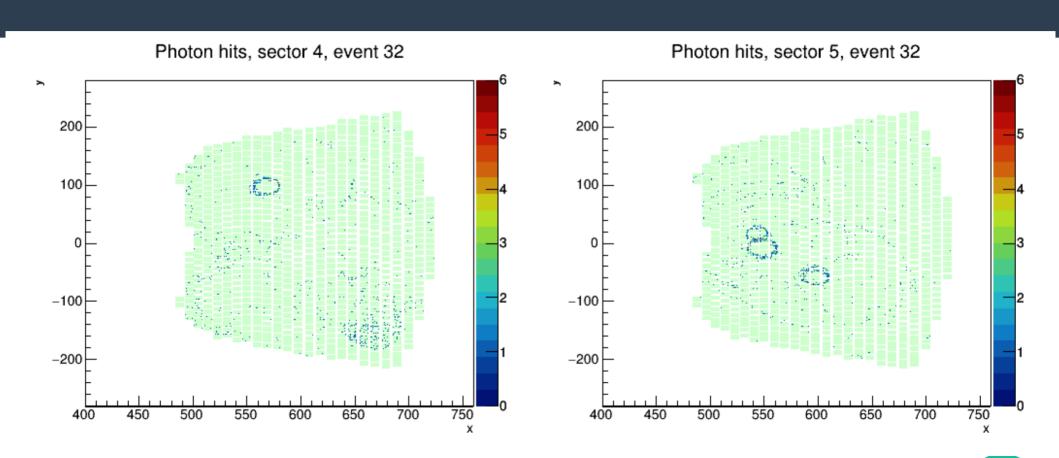

- ElCrecon currently lacks a unit system...
- Proposed DD4hep units and usage of its parser
- Coupled with the need to refactor the configuration

Track Propagation

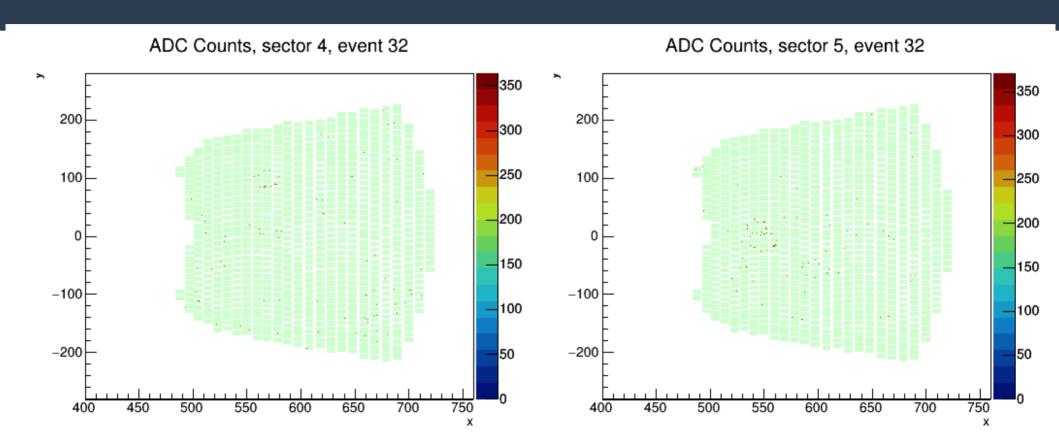

5 z-planes in aergoel 10 z-planes in gas

Thrown pions in y=0 plane Reconstructed track points in **Aerogel** and **Gas**

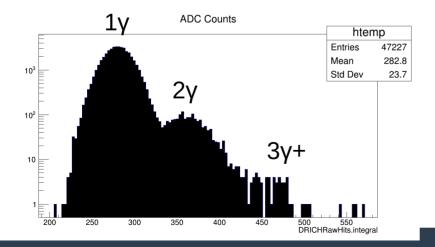
Propagated track points



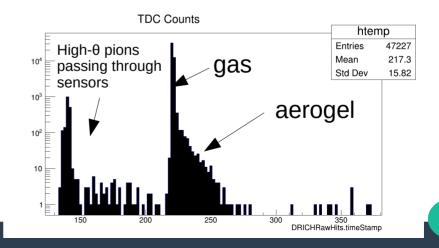
Top view (toward +y)


Note: Small variations in point positions may not be real (more likely an artifact of drawing)

Event Display


Event Display

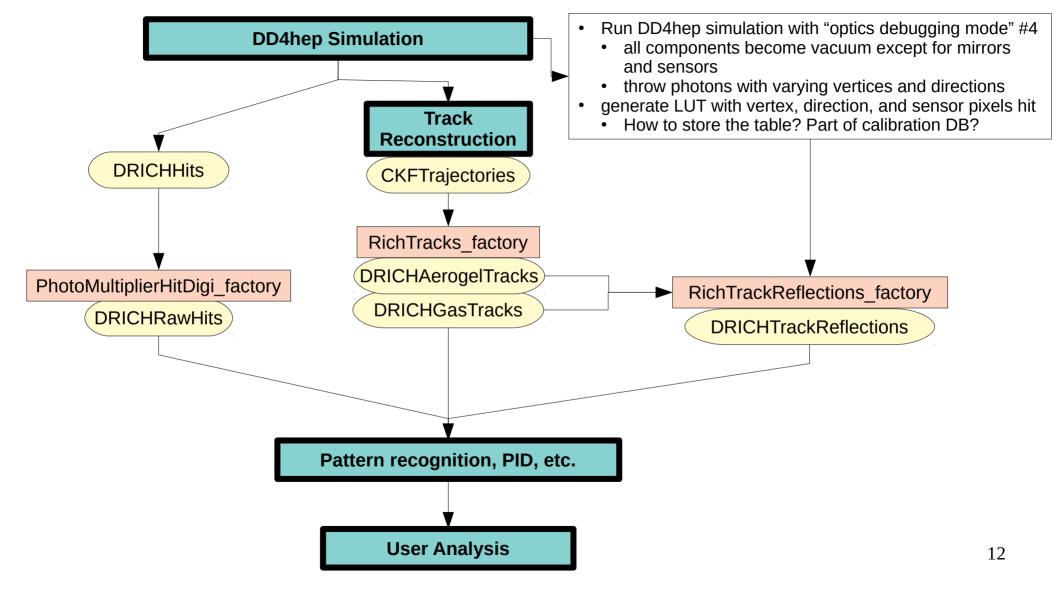
ADC-weighted pixel hits → visualize effects of noise modeling



Digitization

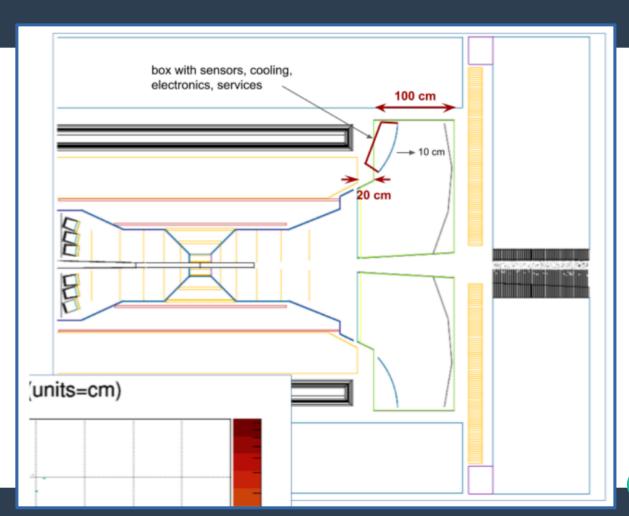
- **TODO:** validate configuration parameters
 - Trigger parameters (gate, pedestal, etc.)
 - Quantum Efficiency
 - Safety Factor 70%
 - Pixel Gap cuts
 - TODO: Noise injection
 - TODO: add Time over Threshold


```
std::vector<std::pair<double, double> > quantumEfficiency = {
  {325*dd4hep::nm, 0.04},
  \{340 * dd4hep::nm. 0.10\}.
  {350*dd4hep::nm. 0.20}.
  \{370 * dd4hep::nm, 0.30\},\
   {400*dd4hep::nm, 0.35},
  {450*dd4hep::nm, 0.40},
  {500*dd4hep::nm. 0.38}.
  {550*dd4hep::nm, 0.35},
  {600*dd4hep::nm, 0.27},
   {650*dd4hep::nm, 0.20},
  \{700 * dd4hep::nm. 0.15\}.
                                  // triggering
  \{750 \times dd4hep::nm, 0.12\},\
                                  double hitTimeWindow = 20.0*dd4hep::ns:
                                  double timeStep
                                                       = 0.0625*dd4hep::ns;
  {800*dd4hep::nm, 0.08},
                                  double speMean
                                                       = 80.0:
  \{850 \times dd4hep::nm, 0.06\}.
                                  double speError
                                                       = 16.0;
  {900*dd4hep::nm, 0.04}
                                  double pedMean
                                                       = 200.0:
                                  double pedError
                                                       = 3.0:
```



Noise Injection

- SiPM Noise injection could be added to PhotoMultiplierHitDigi
 - https://github.com/eic/EICrecon/issues/352
 - See G4SiPM for ideas and models
 - Longer term beyond dRICH scope: DDDigi


Keep in mind other sources of noise, in both the simulation and reconstruction levels...

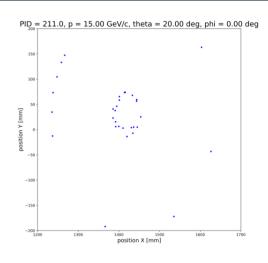
Modeling Services

- https://github.com/eic/epic/ issues/175
- Add service material for the sensors
 - Resin substrates, Bases, Support, Cooling, ...
 - What materials?
 - What thickness?
- Need to shift the sensors forward, and re-focus the mirror

PID Parameterization

- Parameterization generator code:
 - Efficiency in bins of (η,p) , for pairs in $\{\pi,K,p\}$
 - Configuration for Delphes fast simulation (screenshot)
 - Could make a format usable in full simulation analysis

```
add EfficiencyFormula {211} {321} {
        (eta< 1.20 || eta>= 3.60 || pt * cosh(eta) <
                                                                                                                                                                    0.90 \mid \mid pt * cosh(eta) >= 27.00) * (0.00) +
                1.20 <= eta && eta <
                                                                                         1.60) *
                                                                                                                               0.90 \ll pt * cosh(eta) \& pt * cosh(eta) \ll pt * cosh(eta) \ll pt * cosh(eta) < pt = 0.90 < p
                                                                                                                                                                                                                                                                                 1.40) * (0.000000)
               1.20 <= eta && eta <
                                                                                        1.60) * (
                                                                                                                        1.40 \ll pt * cosh(eta) \& pt * cosh(eta) <
                                                                                                                                                                                                                                                                                                           (0.000000)
                                                                                                                        2.90 \ll pt * cosh(eta) \& pt * cosh(eta) <
               1.20 <= eta && eta <
                                                                                        1.60) * (
                                                                                                                                                                                                                                                                                                           (0.000000) +
               1.20 <= eta && eta <
                                                                                      1.60) * (
                                                                                                                      4.20 \ll pt * cosh(eta) \&\& pt * cosh(eta) <
                                                                                                                                                                                                                                                                                 5.50) * (0.000000)
                                                                                                                      5.50 \ll pt * cosh(eta) \& pt * cosh(eta) \ll
               1.20 <= eta && eta < 1.60) * (
                                                                                                                                                                                                                                                                               10.00) * (0.000000)
               1.20 <= eta && eta < 1.60) * (
                                                                                                                            10.00 <= pt * cosh(eta) && pt * cosh(eta) <
                                                                                                                                                                                                                                                                                                           (0.000381)
                1.20 <= eta && eta <
                                                                                                                            15.00 <= pt * cosh(eta) && pt * cosh(eta) <
                                                                                         1.60) *
                                                                                                                                                                                                                                                                                                            (0.026793)
                1.20 <= eta && eta <
                                                                                         1.60) *
                                                                                                                            20.00 <= pt * cosh(eta) && pt * cosh(eta) <
                                                                                                                                                                                                                                                                                                           (0.140689) +
                1.60 <= eta && eta <
                                                                                         2.00) *
                                                                                                                               0.90 \le pt * cosh(eta) \& pt * cosh(eta) <
                                                                                                                                                                                                                                                                                                           (0.000000)
```


Machine Learning - for Reconstruction

AI4EIC 2022 Hackathon:

https://indico.bnl.gov/event/16586/page/435-hackathon

eventID	PID	momentum	theta	phi	X0		X59	Y0		Y59	Z0		Z59
0	211 or 321	p [GeV/c]	θ (deg)	ϕ (deg)	[mm]								
1	211 or 321	p [GeV/c]	θ (deg)	ϕ (deg)	[mm]								
	211 or 321	p [GeV/c]	θ (deg)	ϕ (deg)	[mm]								
	211 or 321	p [GeV/c]	θ (deg)	ϕ (deg)	[mm]								
N	211 or 321	p [GeV/c]	θ (deg)	ϕ (deg)	[mm]								

Table 1: Table summarizing the data format for the hackathon problems

- Challenge: use ML and these data to classify between pions and kaons, under scenarios of increasing difficulty
- ◆ The most difficult scenario involved varying momenta, noise hits, and B-field
- ◆ Future idea: integrate into ElCrecon and compare to baseline IRT