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Deep Inelastic Scattering & Collinear Factorization

See:

• “Partons, “Factorization and Resummation”, hep-ph-9606312

• “Handbook of Perturbative QCD”, Rev. Mod. Phys. 67 (1995) 157.
(no arXive number, but PDF available on Inspire)
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The Context of QCD: “Fundamental Interactions”

• Electromagnetic

• + Weak Interactions ⇒ Electroweak

• + Strong Interactions (QCD) ⇒ Standard Model

• + . . . = Gravity and the rest?

• QCD: A theory “off to a good start”. Think of . . .

– ~F12 = −GM1M2r̂/R
2⇒ elliptical orbits

. . . 3-body problem . . .

– LQCD = q̄ /Dq − (1/4)F 2⇒ asymptotic freedom
. . . confinement . . .
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I. Deep-inelastic Scattering and Collinear Factorization

IA. Nucleons to Quarks

IB. DIS: Structure Functions and Scaling

IC. Classic Parton Model Extensions:
Fragmentation and Drell-Yan

Introduce concepts and results that predate QCD, led to QCD
and were incorporated and explained by QCD.
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IA. From Nucleons to Quarks

• The pattern: nucleons, pions and isospin:



p
n




– p: m=938.3 MeV, S = 1/2, I3 = 1/2

– n: m=939.6 MeV, S = 1/2, I3 = −1/2




π+

π0

π−




– π±: m=139.6 MeV, S = 0, I3 = ±1

– π0: m=135.0 MeV, S = 0, I3 = 0
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• Isospin space . . .

• Globe with a “north star” set by electroweak interactions:

p
+

n

Analog: the rotation group (more specifically, SU(2)).
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• Explanation: π, N common substructure: quarks
(Gell Mann, Zweig 1964)

• spin S = 1/2,
I = 1/2 (u, d) & I = 0 (s)
with approximately equal masses (s heavier);




u (Q = 2e/3, I3 = 1/2)
d (Q = −e/3, I3 = −1/2)
s (Q = −e/3, I3 = 0)




π+ = (ud̄) , π− = (ūd) , π0 =
1
√

2

(

uū+ dd̄
)

,

p = (uud) , n = (udd) , K+ = (us̄) . . .
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This is the quark model

• Quark model nucleon has symmetric spin/isospin
wave function (return to this later)

• Early success: µp/µn = -3/2 (from S = 1/2, I = 1/2 uud,
ddu wave functions; good to %)

• And now, six: 3 ‘light’ (u, d, s), 3 ‘heavy’: (c, b, t)

• Of these all but t form bound states of quark model type.
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• Quarks as Partons: “Seeing” Quarks.

No isolated fractional charges seen (“confinement.”)

Could such a particle be detected?

Look closer: do high energy electrons
bounce off anything hard? (SLAC 1969 – ‘Rutherford-prime’)
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• So look for:

!

e(k) e(k )

?

“Point-like’ constituents.

The angular distribution gives information on the constituents.
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Kinematics (e+N(P )→ `+X)
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• V = γ, Z0⇒ ` = e, µ, “neutral current” (NC).

• V = W−(e−, νe), V = W+(e+, ν̄e), also (µ, νµ) reactions.
“charged current” (CC).

•W 2 ≡ (p+ q)2� m2
proton: Deep-inelastic scattering (DIS)
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Q2 = −q2 = −(k − k′)2 momentum transfer.

x ≡ Q2

2p·q momentum fraction (from p′2 = (xp+ q)2 = 0).

y = p·q
p·k fractional energy transfer in p rest frame.

W 2 = (p + q)2 = Q2

x (1 − x) squared invariant mass of
final-state hadrons.

A useful identity:

xy =
Q2

S
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From CTEQ Summer School 1992:
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– Basic Parton Model Relation

σeh(p, q) =
∑

partons a

∫ 1
0 dξ σ̂

el
ea(ξp, q) φa/h(ξ) ,

– where: σeh(p, q) is the inclusive cross section
e(k) + h(p)→ e(k′ = k − q) +X(p+ q)

– and: σ̂el
ea(ξp, q) is the elastic cross section

e(k) + a(ξp)→ e(k′ − q) + a(ξp+ q) which sets
(ξp+ q)2 = 0→ ξ = −q2/2p · q ≡ x.

– and: φa/h(ξ) is the distribution of parton a in hadron h,
the “probability for a parton of type a to have momentum
ξp”. It is independent of the details of the hard scattering
– the hallmark of factorization.
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– in words: Hadronic INELASTIC cross section is the
sum of convolutions of partonic ELASTIC cross sections
with the hadron’s parton distributions.

– The nontrivial assertion: quantum mechanical incoherence
of large-q scattering and the partonic distributions.
Multiply probabilities without adding amplitudes.

– Heuristic justification: the binding of the nucleon involves
long-time processes that do not interfere with the
short-distance scattering. Later we’ll see how this works
in QCD.
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The basic elastic scattering: electron with “quark” a, frac-
tional charge ea, from one-photon exchange:

2ωk′(k, ξp, q)
d3σ(el)

ea

d3k′
=

e2
fα

2
EM

2s 2p · q




s2 + u2

Q4



δ(ξ − x)

where

s = (ξp+ k)2 , u = (ξp− k′)2 t = −Q2 .

The “extra” delta function restricts the energy of the incoming
quark, which isolates the parton distributions.

To analyze DIS in general terms, we will introduce a more
general notation in terms of “structure functions” below.
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– The conventional picture for distributions:

a,xP

h(P)
a/h(x)!

– “QM incoherence”⇔ no interactions between the outgoing
scattered quark and the rest.

– Note: cross section is like a area. One parton: 1/Q2, area
covered by a ∼ φa(x)/Q2. For this picture to work:

φa(x)/Q2 � πR2
p .

Otherwise, the partons cover the proton and we can assume
only a single interaction. This is called “saturation”.
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QCD can confine and yet be nearly “free”.  Why?   States 
with two extra gluons add up to infinity for R about 1 Fermi.


There has to be a nearby source to absorb them.

Quarks cannot appear alone; this is called “confinement”.

0 1

2
Each increases with R.  

R R

R
+ . . .

For R about 1 fm, they are all equal!

Asymptotic Freedom:  Smaller (Larger) R 
gives weaker (stronger) forces

This is not something proven, but  
demonstrated by 

“numerical lattice simulations” 
which provide beautiful 
agreement in hadronic 

mass differences

What makes QCD different
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This means that the “states” of QCD are really different. 
They are the protons, neutrons and other hadrons, 

mostly made of three quarks (baryons). and quark-antiquark (mesons). 

Our world, of course, is mostly protons, neutrons and the nuclei 
they can make.   In our pictures, they are represented like:

Taken all together, the proton has spin-1/2, the same as an electron or a single quark. 
It has a definite mass and charge +1.   It is extraordinarily stable, and is the ultimate 
decay product for heavier solutions to the QCD Schrodinger equation.

+ + + many more . . .

valence quarks

gluon

sea quarks

= |  proton >

u
u
d
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The other “classic” states:  

| neutron >   =  

| meson >   =  

u

�27

This means that the “states” of QCD are really different. 
They are the protons, neutrons and other hadrons, 

mostly made of three quarks (baryons). and quark-antiquark (mesons). 

Our world, of course, is mostly protons, neutrons and the nuclei 
they can make.   In our pictures, they are represented like:

Taken all together, the proton has spin-1/2, the same as an electron or a single quark. 
It has a definite mass and charge +1.   It is extraordinarily stable, and is the ultimate 
decay product for heavier solutions to the QCD Schrodinger equation.

+ + + many more . . .

valence quarks

gluon

sea quarks

= |  proton >

u
u
d

q
q
_

+ +

d
d

and other quark choices

19
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6/21/19, 9(44 PMUSQCD: US Lattice Quantum Chromodynamics

Page 1 of 2https://www.usqcd.org/hadron.html

USQCD home Physics program Software Hardware USQCD Collaboration

Links and resources

Lattice QCD calculations of the meson spectrum suggest the presence of many exotics.

Contributions of quark spin (blue points)and quark angular
momentum (red points)to the spin of the proton, compared
with experimental results from HERMES.

The mass of the H dibaryon compared with the mass
of two Lambdas, showing the H as a weakly bound or
near-threshold resonance.

 

Physics: structure and interactions of hadrons

The structure of hadrons such as protons and neutrons, their excitations, and the interactions between them are all essential
manifestations of strong-interaction physics. Lattice QCD calculations are key to providing an ab initio understanding of these
phenomena, and to revealing possible new physics beyond them.

The calculation of the low-lying spectrum of bound states is a stringent test of high-precision lattice calculations. The experimental
investigation of the excited states of QCD has undergone a resurgence, including the observation of new states in the Charmonium
system at Belle and at BaBar, the search for the so-called missing baryon resonances of the quark model using CLAS at
JLab@6GeV, and the flagship search for so-called exotic mesons at GlueX at the upgraded JLab@12GeV. Calculations by USQCD
are playing a vital role both in describing existing data, and in predicting the outcomes of future experiments.

A striking example is the
spectrum of meson
states, shown in the
figure. The isovector and
isoscalar masses are
denoted by the grey and
black/green bars
respectively in a
calculation with quarks
having a pion mass of
396 MeV, with the
light/strange quark
content of the isoscalars
indicated by the fraction
of black/green in the
plots. These results
suggest the presence of many exotics in a region accessible to the future GlueX experiment at JLab.

One of the great challenges posed by QCD is understanding how protons and neutrons are made from quarks and glue. Thus a
cornerstone of our effort is achieving a quantitative, predictive understanding of the structure of nucleons and other hadrons using
lattice QCD. Our lattice calculations are directly relevant to experiments at JLab, RHICspin, SLAC, and FNAL, and will have significant
impact on future experiments at the JLab 12 GeV upgrade and a planned electron-ion collider.

The figure at the right shows how our calculations are advancing our knowledge
of the origin of spin in the proton. The blue and the red points show the
contribution of quark spin and quark angular momentum respectively, for both the
u and the d quarks to the spin 1/2 of the proton, with decreasing pion mass. The
bands show the dependence expected from chiral perturbation theory as the pion
mass approaches its physical value. The spins carried by the up and down
quarks agree with the black crosses denoting the experimental HERMES results.

The strong interactions between baryons, such as the proton and neutron, are
key to our existence. Together with the electroweak interactions, they conspire to
produce the spectrum of nuclei and the complicated chains of nuclear reactions
that allow for the production of the elements forming the periodic table at the
earliest times of our universe and in the stellar environments that follow. Decades
of experimental effort have provided a precise set of measurements of the
nucleon-nucleon scattering cross sections over a wide range of energies, which
have given rise to the modern theory of nuclear forces. Lattice QCD calculations
are needed to determine three-body interactions and to complete the connection
between nuclear physics, and the underlying theory of the strong interactions.

An example of recent progress at understanding the interactions between baryons is
that of the Hi-dibaryon, a theoretically predicted two-baryon bound state with two
strange quarks. We calculated the mass of the H-dibaryon, and compared its mass
with that of two free Lambda baryons, each composed of one up, one down and one

“On the lattice”:   very roughly — the computer starts with list of just three quarks, 
or a quark and an antiquark fixed at some position.  The state can be given “extra” 
properties, like spin and left-right symmetry (parity). 

Fun part: “uncertainty principles” in QFT mean that states of all energies  
will emerge.  

It then solves the Schoedinger equation (rules for how the list changes in time)  
and looks for the lowest energy state that is produced.

For example, from the USQCD Collaboration collaboration web site):
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In addition, our nucleons have spin angular momentum. 

To describe for the scattering process, we start in the rest frame, 

pµ = ( m , 0 ) and take Sµ = m ( 0 , s ) .   p2 = m2 = - S2  S . p = 0 . 

In a frame where pµ has a large energy, Sµ also has large components. 
At very high energy they are equal up to a sign. 

This is positive or negative “Longitudinal polarization” or “helicity” 
(projection of intrinsic angular momentum along the direction of motion) 

even though S.p remains equal to 0. 
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• Often convenient to use “lightcone” coordinates and mo-
menta

vµ =

v+, v−, vT




v± =
1
√

2


x0 ± x3




vT = (v2, v1)

in terms of which

v2 = 2v+v− − v2
T

v · w = v+w− + v−w+ − v · w

• for DIS, common momentum assignments are

pµ =

p+, 0−, 0




qµ =



−xp+,

Q2

2xp+
, 0T



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The picture

t

x

x x
− +

3
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• An interpretation we’ll use: fermion field operators Ψ =
e, u, d, . . . absorb particles e, u, d, . . .. We can think of
this is a “measurement”.

• Similarly, (1 + λγ5)Ψ absorbs fermions of helicity λ = ±1.

• Equivalently, γ5Ψ absorbs particles and multiplies by−1 when
the particle has negative helicity.
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What a proton looks like, and why you need high energy to see inside:

To a good approximation, an electron arrives in a virtual state 
with a single extra photon.   Only that photon interacts directly 
with quarks in the proton.  How much can you get from that?

At rest, a proton looks like this, with partonsgoing every which way.

e−

e−

But from the electron’s point of view,they all line up (almost)
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Quite a lot!   When that photon is absorbed by a quark 

The proton may remain “whole”, but change direction: elastic scattering. 

It may produce an “excited” heavier proton: quasi elastic scattering. 

It may break up the proton: inelastic scattering, and produce other 
      particles, anticipated or not in QCD. 

If it transfers a lot of energy: “deeply inelastic (DIS)”. 

This may depend on the spin state of the nucleon. 

Let’s see some of what we can learn from DIS.
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DIS: fixed x and “large” Q2  
QM: Measuring xp spreads the quark’s position along the 

opposite light cone.  

Picturing a typical “deep inelastic” ep event, in the usual variables

f(xp)
A quark f(xp) is struck here

f(xp+q)

Then all hell breaks loose.

e(k)

q
e(k’)

Proton 
momentum p

time

Sum over ALL states  
at fixed Q2 and x=Q^2/2p.q
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• Once the photon localizes the quark field in amplitude and
complex conjugate, the cross sections for the sum over all
final states add to unity, with corrections of order αs(Q).
This gives the generalization of the parton model relation:

σeh(p, q) =
∑

partons a

∫ 1
0 dξ σ̂

el
ea(ξp, q) φa/h(ξ) ,

to the QCD relation:

σeh(p, q) =
∑

partons a

∫ 1
0 dξ σ̂ea(ξp, q, µ) φa/h(ξ, µ) ,

where µ ∼ Q is an otherwise arbitrary scale that defines the
matrix element for φa/n and where (schematically)

σ̂ea(ξp, q, µ) = σ̂el
ea(ξp, q) δ(ξ − x) +O(αs(µ))

• In pictures . . .
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Final States 
 N at x,Q2

S

2

=
f(xp)

f(xp+q)

e(k)

e(q−q)

q

2

+ . . .

X

• Where the final factor φ(ξ, µ) is the “collinear” parton distri-
bution, with a matrix element defnition . . .
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where the new h̃j is related to the old H̃j by

h̃j(Q
2/µ2) = (Q2)j @

@Q2
H̃j(Q

2/µ2) (23)

T , W and the optical theorem

• Before going on, we should relate T µ
µ to W µ

⌫ . This is through the optical
theorem. We can interpret T µ⌫ as the forward scattering amplitude for
a virtual photon on a proton. (In principle, we get a cross section by
contracting with polarization vectors for the photon, but this doesn’t
a↵ect the reasoning here.) Then its imaginary part is the total cross
section for virtual photon-proton scattering, which (up to an overall
factor) is exactly the expression for W µ⌫ , defined as in Eq. (8). In our
case we have

2Im T µ⌫(p, q) = W µ⌫(p, q) . (24)

• The tensor T µ⌫ has branch cuts for (p + q)2 � 0 and (p � q)2 � 0,
which are equivalent to 0  |x|  1. This has a nice picture in the
! = 1/x plane, where two branch cuts are on the real axis, from ! = 1
to infinity and ! = �1 to minus infinity. From Eq. (24), T µ⌫ is real for
�1 < ! < 1, so we know it has “cut plane analyticity”.

Antiquark distributions and moments

• Now let’s prove two lemmas.

• The first lemma involves the extension of the quark distribution to
negative fractional momentum ⇠. This will give us an antiquark dis-
tribution. So, let’s introduce a function that is the same as �q(⇠) for
⇠ > 0.

fq(⇠) =
Z

d�e�i�⇠p+
D
p
���q̄�(�nµ)�+

�↵q↵(0)
��� p
E

, ⇠ > 0 ,

= �
Z

d�e�i�|⇠|p+
D
p
���q↵(�nµ) q̄�(0)�+

�↵

��� p
E

, ⇠ < 0 , (25)
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f(xp)
A quark f(xp) disappears here

The same quark f(xp) reappears here

A proton in the past.

The same proton in the future.

Parton distribution as a matrix element for two measurements:

Time
light cone

f(x,µ)

• The operator q̄(λn) isO(1/µ) from the light cone nµ = (0, 1−, 0)
(renormalization of the matrix element).

30



• A contemporary set of parton distributions “at different scales”:
see “evolution” (CTEQ 2015: 1506.07443):

III. OVERVIEW OF CT14 PDFS AS FUNCTIONS OF x AND Q

g!x,Q"#5
u

d

u!bar
d!bar

s!bar
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FIG. 4: The CT14 parton distribution functions at Q = 2 GeV and Q = 100 GeV for u, u, d, d, s = s,

and g.

Figure 4 shows an overview of the CT14 parton distribution functions, for Q = 2.0 GeV

and Q = 100 GeV. The function xf(x, Q) is plotted versus x, for flavors u, u, d, d, s = s,

and g. We assume s(x, Q0) = s̄(x, Q0), since their difference is consistent with zero and has

large uncertainty [94]. The plots show the central fit to the global data listed in Tables I and

II, corresponding to the lowest total χ2 for our choice of PDF parametrizations.

The relative changes that happened when transitioning from the CT10 NNLO to the

CT14 NNLO ensemble are best visualized by comparing the PDF uncertainties of the two

analyses. Fig. 5 compares the PDF error bands at 90% confidence level for the key flavors,

with each band normalized to the respective best-fit CT14 NNLO PDF. The blue solid and

red dashed error bands are obtained for CT14 and CT10 NNLO PDFs at Q = 100 GeV,

respectively. The equivalent figures for Q = 2 GeV, showing similar trends, can be viewed

on the CT14 website [95].

Focusing first on the u and d flavors in the upper four subfigures, and on the behavior

at x < 10−2, we observe that the u and ū PDFs have mildly increased in CT14 at these

x values, while the d and d̄ PDFs have become slightly smaller. These changes can be

20

• The distributions change with Q: φa(x)→ φa(x,Q) – we’ll
see where this comes from.
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B. DIS: Structure Functions and Scaling

!!"#

$!%#

$!%&#

XP

Photon exchange

Ae+N→e+X(λ, λ′, σ; q) = ūλ′(k
′)(−ieγµ)uλ(k)

×
−igµµ′

q2

×〈X| eJEM
µ′ (0) |p, σ〉

• Historically an assuption that the photon couples to hadrons
by point-like current operator. Now, built into the Standard
Model.
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• The cross section:

dσDIS =
1

22

1

2s

d3k′

(2π)32ωk′

∑

X

∑

λ,λ′,σ
|A|2

× (2π)4 δ4(pX + k′ − p− k)

In |A|2, separate the known leptonic part from
the “unknown” hadronic part: ∑ |A|2δ4(· · ·) ≡ LµνWµν.
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• The leptonic tensor:

Lµν =
e2

8π2
(ūλ′(k

′)γµuλ(k))∗ (ūλ′(k
′)γνuλ(k))

=
e2

8π2
Tr


k/γ

µ1

2
(1 + λγ5)k/′γν




=
e2

4π2

(

kµk′ ν + k′ µkν − gµνk · k′
)

−iλ
e2

4π2
εµνλσkλk

′
σ

34



• Leaves us with the “hadronic tensor”:

WV h
µν =

1

8π

∑

σ,X
〈X|J(V )

µ |p, S〉∗〈X|J(V )
ν |p, S〉

× (2π)4δ4(pX − p− q)

where J(V )
µ is the electroweak current, coupled to vector:

V = photon, Z0 (or W±). It is dimensionless,

• And the cross section becomes:

2ωk′
dσ

d3k′
=

1

s(q2)2
LµνWµν

•Wµν has sixteen components,
but known properties of the strong interactions
constrain Wµν . . .
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• An example: current conservation,

∂µJEM
µ (x) = 0

⇒ 〈X| ∂µJEM
µ (x) |p〉 = 0

⇒ (pX − p)µ〈X| JEM
µ (x) |p〉 = 0

⇒ qµWµν = 0

• With time-reversal, etc . . .

36



Wµν = −

gµν −

qµqν

q2


 W

(V h)
1 (x,Q2)

+


pµ − qµ

p · q
q2





pν − qν

p · q
q2


 W

(V h)
2 (x,Q2)

+εµνλσq
λ




sσ

p · q
g1(x,Q2) +

[p · qsσ − s · qpσ]

(p · q)2
g2(x,Q2)




The final line is for polarized targets with spin sσ.

• Often given in terms of the dimensionless structure functions,

F1 = W1 F2 = p · qW2 F3 g1 g2 .

• Note that if there is no other mass scale, the F ’s cannot
depend on Q except indirectly through x.
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The unpolarized cross section:

d2σ

dxdQ2
=

4πα2

xQ4






1− y +

y2

2



F2(x,Q2)−

y2

2
FL(x,Q2)




in terms of the “longitudinal” structure function:

FL(x,Q2) = F2(x,Q2)− 2xF1(x,Q2)

This comes from the symmetric parts of Wµν and L|muν.
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Only the spin-dependent parts of Wµν and L|muν. are anti-
symmetric, so the electron must also be polarized to measure
hadronic spin-dependence:

1

2




d2σ+−

dxdQ2
−
d2σ++

dxdQ2




=
4πα2

Q4
y(2− y)g1(x,Q2).

where the signs refer to electron and nucleon longitudinal
spins. We neglect power-suppressed g2 terms.
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• All of the structure functions inherit the same factorized form
as the cross sections, in terms of polarized and unpolarized
parton distributions:

Fi(p, q) =
∑

partons a

∫ 1
0 dξ Ci(ξp, q, µ) φa/h(ξ, µ)

and

g1(x,Q) =
∑

partons a

∫ 1
0 dξ Cg(ξp, q, µ) ∆φa/h(ξ, µ)
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• The distributions as matrix elements for the quarks:

φa/h(ξ, µ) =
1

2

∑

S

∫ dλ

2π
e−iλξp·n 〈p, S|Ψ̄a(λn)n · γΨa(0)|p, S〉

∆φa/h(ξ, µ) =
1

2

∑

S

∫ dλ

2π
e−iλξp·n

× 〈p, S|Ψ̄a(λn)γ5n · γΨa(0)|p, S〉

In both cases, the field Ψa(0) absorbs particle a at the origin,
and Ψ̄a(λn) recreates the particle at distance λn away along
the nµ lightcone, in the direction opposite to pµ. The extra
γ5 in ∆φa assigns an extra −1 for negative helicity quarks.
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• Structure functions in the Parton Model:
The Callan-Gross Relation

From the “basic parton model formula”:

dσeh

d3k′
=

∑

quarks f

∫
dξ

dσel
ef(ξp)

d3k′
φf/h(ξ) (1)

Can treat a quark of “flavor” f just like any hadron and get

ωk′
dσel

ef(ξp)

d3k′
=

1

2(ξs)Q4
LµνW ef

µν (k + ξp→ k′ + p′)
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Let the charge of f be ef .

Exercise 1: Compute W γf
µν to find:

W γf
µν = −


gµν −

qµqν

q2


 δ


1−

x

ξ




e2
f

2

+


ξpµ − qµ

ξp · q
q2





ξpν − qν

ξp · q
q2


 δ


1−

x

ξ




e2
f

ξp · q

Ex. 2: by substituting in (1), find the Callan-Gross relation,

F2(x) =
∑

quarksf
e2
fxφf/p(x) = 2xF1(x)

Ex. 3: that this relation is quite different for scalar quarks.
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• The Callan-Gross relation shows the compatibility
of the quark and parton models.

• In addition: parton model structure functions are
independent of Q2, a property called “scaling”.

• With massless partons, there is no other massive scale.
Then the F ’s must be Q-independent; see above.

• Approximate properties of the kinematic region
explored by SLAC in late 1960’s – early 1970’s.

• QCD “evolution” gives corrections to this picture.
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D. Classic Parton Model Extensions:
Fragmentation and Drell Yan

• Fragmentation functions

• “Crossing” applied to DIS: “Single-particle inclusive” (1PI)
From scattering to pair annihilation.

Parton distributions become “fragmentation functions”.

4. Extensions

• Fragmentation functions

“Crossing” applied to DIS: “Single-particle inclusive” (1PI)

From scattering to pair annihilation.

Parton distributions become “fragmentation functions”.

X
P

q  <02
e

e

X

P

e

e

a,xP a,P/z

h(P)

h(P)

D
h/a
(z)

a/h
(x)!
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• Parton model relation for 1PI: inclusive hadron from exclusive
parton:

dσ
(incl)
h (P, q)

d3P
=

∑

a

∫ 1
0 dz

dσ
(elas)
e+e−→a(P/z, q)

d3P
Dh/a(z)

• The direction of the hadron follows the direction
of the parton!

•Dh/a is “universal”: could be in DIS, or hadron-hadron
scattering.

• Heuristic justification from time dilation: Formation of hadron
h(P ) from parton a(P/z) takes a fixed time τ0 in the rest
frame of a, but much longer in the CM frame – this “frag-
mentation” thus decouples from σ(elastic)

a , and is independent
of q (scaling).
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• For e+(k2)e−(k1)→ q(p1)q̄(p2).
Exercise 4: Start with the matrix element:

M = eq
e2

Q2 u(p1, σ1)γµv(p2, σ2) v(k2, s2)γµu(k1, s1)

• First square and sum/average spins in M. Then evaluate
phase space at fixed angle for the “quark” p1 in the final
state to get:

dσ
(elastic)
qq̄→µµ̄ (k1, k2)

dΩ
=

1

2Q2

e2
qe

4

32π2
e2
qe

4

1 + cos2 θ




With Q2 = (k1 +k2)2, and θ the angle between the electron
and the quark.
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• The fragmentation picture suggests that almost all hadrons
are aligned along parton directions ⇒ most hadrons come
out together as “jets”, following the 1 + cos2 θ distribution
relative to the incoming electron. And this is what happens.

• Hadrons should show up this way, and they do.
• For e+e−:

Y

X
Z

200. cm.

Cent re of screen i s ( 0.0000, 0.0000, 0.0000)

50 GeV20105

Run:event 4093: 1000 Date 930527 Time 20716

Ebeam45.658 Evis 99.9 Emiss -8.6 Vtx ( -0.07, 0.06, -0.80)

Bz=4.350 Thrust=0.9873 Aplan=0.0017 Oblat=0.0248 Spher=0.0073

Ct rk(N= 39 Sump= 73.3) Ecal (N= 25 SumE= 32.6) Hcal (N=22 SumE= 22.6)

Muon(N= 0) Sec Vtx(N= 3) Fdet (N= 0 SumE= 0.0)

Ev
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Figure 1: (a) Fit of equation (6) to the corrected data corresponding to the thrust bin
0.70 < T < 0.75; it has χ2/d.o.f.=79/90. The fitted region is −0.92 < cos θTh < 0.92. The
contributions from the longitudinal and transverse cross-sections are shown separately. (b)
The residuals from the fit.
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• For DIS:• And for DIS:

 Q**2 = 21475   y = 0.55   M = 198 
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• And for nucleon-nucleon collisions:
• And in nucleon-nucleon collisions:
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• Finally: the Drell-Yan process

• In the parton model (1970).
Drell and Yan: look for the annihilation of quark pairs
into virtual photons of mass Q . . . any electroweak boson
in NN scattering.

dσNN→µµ̄+X(Q, p1, p2)

dQ2d . . .
∼

∫
dξ1dξ2

∑

a=qq̄

dσ
EW,Born
aā→µµ̄ (Q, ξ1p1, ξ2p2)

dQ2d . . .
×(probability to find parton a(ξ1) in N)

×(probability to find parton ā(ξ2) in N)

The probabilities are φq/N(ξi)’s from DIS!
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How it works (with colored quarks) . . .

• The Born cross section: e+e− backwards.

σEW,Born is all from this diagram (parton x’s set to unity):

How it works (with colored quarks) . . .

• The Born cross section

σEW,Born is all from this diagram (ξ’s set to unity):

q(p1)

q(p2)

l
-
(k1)

l
+
(k2)

With this matrix element

M = eq
e2

Q2u(k1)γµv(k2)v(p2)γ
µu(p1)

• First square and sum/average M . Then evaluate phase space.

With this matrix element:

M = eq
e2

Q2 u(k1, σ1)γµv(k2, σ2) v(p2, s2)γµu(p1, s1)

• First square and sum/average M . Then evaluate phase space.
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• Total cross section at “pair mass” Q2 = (x1p1 + x2p2)2

σEW, elastic
qq̄→µµ̄ (x1p1, x2p2) =

1

2ŝ

∫ dΩ

32π2

e2
qe

4

3
(1 + cos2 θ)

=
4πα2

9Q2
∑

q
e2
q

With Q the pair mass and 3 for color average.
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• And measured rapidity:

Pair mass (Q) and rapidity

η ≡ (1/2) ln




Q+

Q−




= (1/2) ln




Q0 +Q3

Q0 −Q3




• ξ’s are overdetermined → delta functions in the Born cross
section

dσ
(PM)
NN→µµ̄+X(Q, p1, p2)

dQ2dη
=

∫

ξ1,ξ2
∑

a=qq̄
σEW,Born
aā→µµ̄ (ξ1p1, ξ2p2)

×δ

Q2 − ξ1ξ2S


 δ


η −

1

2
ln




ξ1

ξ2







×φa/N(ξ1)φā/N(ξ2)
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• and integrating over rapidity, back to dσ/dQ2,

dσ

dQ2
=




4πα2
EM

9Q4




∫ 1
0 dξ1 dξ2 δ (ξ1ξ2 − τ )

× ∑

a
λ2
aφa/N(ξ1)φā/N(ξs)

Found by Drell and Yan in 1970 (aside from 1/3 for color).

Analog of DIS scaling in x is DY scaling in τ = Q2/S.

• Template for all hard hadron-hadron scattering

• Exercise 5: fill in the results for this parton model cross sec-
tion, starting from the matrix element M .
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• Appendix I: Quarks in the Standard Model

Electroweak interactions of quarks: SU(2)L × U(1). Their
non-QCD interactions.

• Quark and lepton fields: L(eft) and R(ight)

– ψ = ψ(L) + ψ(R) = 1
2(1− γ5)ψ + 1

2(1 + γ5)ψ; ψ = q, `

– Helicity: spin along ~p (R=right handed) or opposite
(L=left handed) in solutions to Dirac equation

– ψ(L): expanded only in L particle solutions to Dirac eqn.
R antiparticle solutions

– ψ(R): only R particle solutions, L antiparticle

– An essential feature: L and R have
different interactions in general!
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– L quarks come in “weak SU(2)” = “weak isospin” pairs:

q
(L)
i =




ui
d′i = Vijdj


 u

(R)
i , d

(R)
i

(u, d′) (c, s′) (t, b′)

`
(L)
i =




νi
ei


 e

(R)
i , ν

(R)
i

(νe, e) (νµ, µ) (ντ , τ )

(We’ve neglected neutrino masses.)

– Vij is the “CKM” matrix.

– The electroweak interactions distinguish L and R.
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• Weak vector bosons: electroweak gauge groups

– SU(2): three vector bosons Bi with coupling g

– U(1); one vector boson C with coupling g′

– The physical bosons:

W± = B1 ± iB2

Z = −C sin θW +B3 cos θW
γ ≡ A = C cos θW +B3 sin θW

sin θW = g′/
√

g2 + g′2 MW = MZ/ cos θW

e = gg′/
√

g2 + g′2 MW ∼ g/
√
GF
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• Weak isospin space: connecting u with d′

!
"

# $

% $

& $

$!

• Only left handed fields move around this globe.
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– The interactions of quarks and leptons
with the photon, W, Z

L(fermion)
EW =

∑

all ψ
ψ̄

(

i/∂ − eλψ /A− (gmψ2MW )h
)

ψ

−(g/
√

2)
∑

qi,ei
ψ̄(L)


σ+/W+ + σ−/W−


ψ(L)

−(g/2 cos θW )
∑

all ψ
ψ̄

(

vf − afγ5
)

/Z ψ

– Interactions with W are through ψL’s only.

– Neutrino Z exchange depends on sin2 θW
even at low energy.

– This observation made it clear by early 1970’s that
MW ∼ g/

√
GF is large → a need for colliders.

– Coupling to the Higgs h ∝ mass (special status of t).
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• Symmetry violations in the standard model:

–W ’s interact through ψ(L) only, ψ = q, `.

– These are left-handed quarks & leptons;
right-handed antiquarks, antileptons.

– Parity (P) exchanges L/R; Charge conjugation (C)
exchanges particles, antiparticles.

– CP combination OK (L→P R→C L) if all else equal,
but it’s not (quite) . . .

Complex phases in CKM V result in CP violation.
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• Appendix II: Structure Functions and Photon Polarizations

In the P rest frame can take

qµ =

ν; 0, 0,

√

Q2 + ν2

 , ν ≡

p · q
mp

In this frame, the possible photon polarizations (ε · q = 0):

εR(q) =
1
√

2
(0; 1,−i, 0)

εL(q) =
1
√

2
(0; 1, i, 0)

εlong(q) =
1

Q



√

Q2 + ν2, 0, 0, ν


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• Alternative Expansion

Wµν =
∑

λ=L,R,long
ε
µ
λ
∗(q)ενλ(q)Fλ(x,Q2)

• For photon exchange (Exercise 4):

F
γe
L,R = F1

Flong =
F2

2x
− F1

• So Flong vanishes in the parton model by the C-G relation.
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• Generalizations: neutrinos and polarization

• Neutrinos: flavor of the “struck” quark is changed when
a W± is exchanged. For W+, a d is transformed into
a linear combination of u, c, t, determined by CKM matrix
(and momentum conservation).

• Z exchange leaves flavor unchanged
but still violates parity.
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• The V h structure functions for = W+,W−, Z:

W (V h)
µν −


gµν −

qµqν

q2


 W

(V h)
1 (x,Q2)

+


pµ − qµ

p · q
q2





pν − qν

p · q
q2




1

m2
h

W2(x,Q2)

−iεµνλσpλqσ
1

m2
h

W
(V h)
3 (x,Q2)

• with dimensionless structure functions:

F1 = W1 , F2 =
p · q
m2
h

W2 , F3 =
p · q
m2
h

W3

• F (νh)
i gives W+ h scattering, F

(ν̄h)
i gives W− h
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• And with spin (for the photon).

Wµν =
1

4π

∫
d4z eiq·z 〈h(P, S) | Jµ(z)Jν(0) |h(P, S)〉

=


−gµν +

qµqν

q2


 F1(x,Q2)

+


P
µ − qµ

P · q
q2





P
ν − qν

P · q
q2


F2(x,Q2)

+ imh ε
µνρσqρ




Sσ

P · q
g1(x,Q2) +

Sσ(P · q)− Pσ(S · q)
(P · q)2

g2(x,Q2)



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• Parton model structure functions:

F
(eh)
2 (x) =

∑

f
e2
f xφf/h(x)

g
(eh)
1 (x) =

1

2

∑

f
e2
f


∆φf/n(x) + ∆φ̄f/h(x)




• Notation: ∆φf/h = φ+
f/h − φ−f/h with φ±f/h(x)

probability for struck quark f to have momentum fraction x
and helicity with (+) or against (−) h’s helicity.
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