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Lecture 11l (June 7)
e A taste of our experimental knowledge of g
e As time permits ...
Factorization and Evolution in More Detail
A. Factorization in DIS
B. DIS at one loop
C. (DGLAP) Evolution

Appendix: Factorization in hadron-hadron scattering



e Measurement of g;
(Proton and deuteron, from various experiments)
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e Unified figure from Hermes Collaboration: Phys.Rev.D 75
(2007) 012007 e-Print: hep-ex/0609039 [hep-ex]
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e A focus of spin physics: the Bjorken Sum Rule:

§de (g8(6:Q) — g(6.Q)) = _ g4 (1+O(as(Q))

— g1’ on LHS from parton distributions Afa/np for u, d,
s, Ag ..., but we expect s and g parts to cancel in the
“non-singlet” difference — only Au and Ad left.

— RHS from neutron beta decay, n — p + e + v with QCD
corrections from factorization (the C, for gis).

— Fairly well confirmed by experiment, although there seems
to be a need of contributions from x too small to be mea-
sured by experiments so far (we’ll probably have to wait for
the EIC).



— The Bjorken sum rule is considered a firm prediction of
QCD as we understand it. Analogous relations for g{""
separately require more knowledge of Ag, As etc. Clas-
sic predictions are from FEllis-Jaffe sum rules, which require
input from hyperon (A, X) decays — applications require
further assumptions, less well understood.

— Historically, working backwards from g; measurements us-
ing hyperon decay information suggested that Au and Ad
were much less that 1 — often referred to as “spin crisis”. By
now new measurements, lattice results and interpretation
suggest a more balanced sharing of spin between quarks,
gluons and orbital angular momentum.

— Understanding orbital angular momentum requires going
beyond collinear PDFs ...



— From these and other data, recent fits (DSSV and NNPDF,
shown in de Florian et al., Phys.Rev.D 100 (2019) 11,
114027 e-Print: 1902.10548 [hep-ph])
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FIG. 2: Same as Fig. 1 but now showing our results for the quark and antiquark helicity PDFs at Q? = 10 GeV? in comparison
to the analyses of DSSV14 and NNPDFpoll.1.



A. Factorization in DIS

e Challenge: use AF in observables o
(cross sections, also some amplitudes)
that are not infrared safe

e Possible if: o has a short-distance subprocess.
Separate /R Safe from IR: this is factorization

e IR Safe part (short-distance) is calculable in pQCD

¢ Infrared part — example: parton distribution —
measureable and universal

¢ Infrared safety — insensitive to soft gluon emission
collinear rearrangements



e For DIS, find a result ...

e Just like Parton Model except in Parton Model
the infrared safe part is o1,0 = ¢(x) normalized uniquely

e In pQCD must define parton distributions
more carefully: the factorization scheme

e Basic observation: virtual states are not truly frozen.
Some states fluctuate on scale 1/Q ...
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Short-lived states, which give In(Q)
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e Longer-lived states = Collinear Singularity (IR)

e How we systematize to all orders in perturbation theory ...a
taste of “all-orders” proofs in pQCD.



e We can generalize to all IR singularities (logarithms).
“Rule”: only classical processes with on-shell particles.

soft lines

. scattered
- et lines

:}Collinear lines
T P
54
A 2 A*
e This is “Cut diagram notation”, representing the amplitude

and complex conjugate. Adding up all cut diagrams is the
same as summing diagrams of A and then taking | A|?.
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e Again, the “rule”: to produce a singularity, the on-shell lines
of a cut diagram have to tell a classical story.

soft lines

. scattered
[ : ||neS

: _/(;K Collinear lines
: P

A*

4
1 4
4

RO,

e The classical story: h splits into collinear partons, then one
of them scatters, producing jets that recede at speed of light,
connected only by “infinite wavelength soft” quanta.
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e One more time: the structure of on-shell lines in an
arbitrary cut diagram. For massless partons, this is the only
kind of classical story DIS has to tell.

soft lines

scattered
lines

j Collinear lines
P

A <,

e “Soft collinear effective theory (SCET)” builds this structure
into calculations by isolating the parts of the full QCD La-
grangian that give S, J and the “scattered jet”. SCET or-
ganizes calculations that are equivalent to full QCD when

factorization applies.
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e Use of the optical theorem — relate the inclusive cut diagram
to forward scattering. No classical processes are possible,
because the scattered quarks must re-scatter, and all interac-
tions after the hard scattering collapse to a “short-distance”
function C, that depends only on xp and q:

q

N

e All long-distance logs cancels because of the inclusive sum
over states. Soft gluons in S can’t see the “tiny” final state.
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e The partons on each side of the short distance function C(p, q)

must have the same flavor and momentum fraction.
Xp,a Xp,a

Im

P o o

e Definition of parton distribution generates all the same long-
distance behavior left in the original diagrams (quark case)
after the sum over hadronic final states:

d ) _
Ba/n(@,pup) = 5 [ e Y (po|gyT)vTa(0)|p, o)

spins o 27

e This matrix element requires renormalization: thus the ‘ug’.

e Here in AT = 0 gauge — more generally with Wilson lines
(see I. Stewart lectures).
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e The result: factorized DIS

th(wa Qz) — /:1:3l d€ ng r 9 : HF,QS(/J’R))

¢ uR BR
X ¢q/h(£7 HEF OQS(H’F))

. Q 9 “FvaS(,UJR)] ® ¢q/h(€,MF,QS(MF))

EC;q .
§ UR UR

® ¢4/p has In(up/AqQep) - .- with pp its independent
renormalization scale.

e C has In(Q/pR), In(pr/pR)
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e Often pick up = pp and often pick urp = ). So often see:

h
F;/ (:B, Qz) — ng

00s(@)] ® @q/n(€.Q?

B. DIS at one loop

e But we still need to specify what we really
mean by factorization: scheme as well as scale.

e For this, compute F,(x, Q), i.e. the hadron h = qf, a quark
say flavor f.

o Keep 1 = ug for simplicity.

15



e “Compute quark-photon scattering” — What does this mean?

Must use an [R-requlated theory
Extract the /R Safe part then take away the regularization

e Let's see how it works ...

e At zeroth order — no wnteractions:

Cc715(0) = €3 §(1 — a/¢)
(LO cross section; parton model)

Bupyan (&) = Oppr 5(1 =€)

(at zeroth order, momentum fraction conserved)
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F;/qf (0)(33’ Q2) _ /a::[ d€ C;/qf (0) aj, Q ,ILF,as(ll'R)
§ MR MR

X qb,(l?c)/qf(&, pE, cs(UF))

= e} [pdEd(1—wx/€) 6(1 — &)

= e?: xd(1 — x)

e On to one loop ...
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e ['71 at one loop: factorization schemes

e Start with F5 for a quark:

14/ I
N\ z el
. .
, ,
= b’b@’@
[ XeXexe)

A \{
refe( / 2;? +é//
"virtual" .

Have to combine final states with different phase space ...
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e “Plus Distributions’:

f(x) _ f(x) — (1)
b <1l—a:>+ =0T |
n(l —x n(l —x
/Oda:f(ac) ( ) EoldCB (f(x) — f(1)) (_ )
+ (1—x)
and soon .... In DIS:

e f(x) will be parton distributions (not constant!)
e f(x) term: real gluon, with momentum fraction 1 — x

e f(1) term: virtual, with elastic kinematics

e DGLAP “evolution kernel” = “splitting function”
as 1+ 2
p(l)(w)
1 —x 4
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Important note: with f constant,

In"(1 — x)

1 —x

1dx

I = 0.

_|_

But for us, f(x) is a parton distribution, and hence not a
constant.

e g Expansion:

Fyx,Q%) = [}de CF? Z liaZZaas(NR)

X ¢q/q(€a HF as(ﬂF))

FJx, Q% = C(O) $(0) _|_ * o) $0) _|_ =5 00 41 4

27T 27T
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e And result:

F)(2,Q%) = €% { & 5(1 — x)

1+ x? (In(1 — )

1 —x

Qg

F(x, Q%) = ;x {F;qf(w,Qz) —Cpa—; 2w }

Note: to compare to etTe™ integrals:
k4 <+ k?(1 —cos?0), k <> Q(1 — x). Real and virtual would
cancel here too, if we just integrated over x, but we don’t —

we multiply times ¢qf/h, which depends on x.

2
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e Factorization Schemes

MS (Corresponds to matrix element above.)

2dk
(1) (m M ) 2 qu(w) /0 k:;

With kp-integral “IR regulated”.

Advantage: technical simplicity; not tied to process.
C(l)(a:)MS = (as/2m) Pyq(x) n(Q?/p?) + p-independent

DIS:
(84
bq/q(® 1) = 5 F1U (2, 1)

Absorbs all uncertainties in DIS into a PDF.

Closer to experiment for DIS.
CW(z)prs = (as/2m) Pyq(x) In(Q%/p?) + 0
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e Using the Regulated Theory to Get Parton Distributions for
Real Hadrons ...

IR-regulated QCD is not REAL QCD

BUT it only differs at low momenta
THUS we can use it for IR Safe functions: C37, etc.

THIS enables us to get PDFs from experiment.
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e Compute F,'1, F;G .
Define factorization scheme; find IR Safe C'’s

Use factorization in the full theory

th — 2 C"® ¢a,/h
azc]fanaG

Measure F> (h = n,p); then use the known C’s to derive

qba/h

NOW HAVE ¢,, /1, (¢, #2) AND CAN USE IT IN ANY OTHER
PROCESS THAT FACTORIZES.

e Multiple flavors and cross sections complicate technicalities;
not logic (Global Fits)
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e C. Evolution: Q?-dependence

e In general, Q*/u? dependence still in Cy, (z/€, Q% /12, as(p))
Choose . = Q

h
"z, Q%) =5 [} d¢ C3°

gt as(c»] ban(€s Q)

Q > Aqcp — compute Cs in PT.
L as(Q)) =3 (QS(Q)] c3*m
3 n 7Ly

xr

§

cy

But still need PDFs at u = Q: qba/A(f, Q?) for different Q’s.
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e How evolution works ...

e A remarkable consequence of factorization.

o Can use ¢pg (2, Q32) to determine

qba/A(a:, Q2) and hence Fy 2 3(x, Qz) for any Q

¢ So long at as(Q) is still small.

e Let's see how it works explicitly in an example.

26



e The ‘nonsinglet’ distribution (recall Bjorken SR: g% — a7)

NS __ P n
FINS — g _

r Q

FY™S(a, Q%) = [Lag ™5 |2 u,as(m) ons(€s p?)

Gluons, antiquarks cancel

At one loop: C’QNS = C;N
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e Basic tool:

e ‘Mellin’ Moments and Anomalous Dimensions

f(N) = jy dz 2™~ f()

e Reduces convolution to a product

@) = [Ldy g (‘;”) h(y) — F(N) = g(N) R(N + 1)
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e Moments applied to NS structure function upr = up = u:

Q

BN, Q%) = &N (N “,as(m] ns (N, 12)

(Note ¢ns(IV, p?) = g dE€ £ (&, u?) here.)

7NS(N Q?) is Physical

d —ANS
= Md,u (N, Q%) =0
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e ‘Separation of variables’

d
Mo In pns (N, p?) = —ns (N, as(p))

d_ _.NS
NS (IV, as(p)) = HJ@IH C9 ™ (N, as(p))

e Because a; is the only variable held in common.

e yns an “anomalous dimension”, which controls the logarith-
mic i dependence.
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d _
o In pns (N, %) = —yNs(IV, as(p))

d  _NS
NS (IV, as(p)) = Hduln C; (N, as(p))

e Only need to know C’s = ~; from IR regulated theory!

4
(Q-DEPENDENCE DETERMINED BY PT
EVOLUTION
THIS WAS HOW WE FOUND OUT QCD IS ‘RIGHT"

AND THIS IS HOW QCD PREDICTS PHYSICS
AT NEW SCALES
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e vng at one loop (5th line is an exercise.)

d _
ws(N,as) = p— In CIN° (N, as(Q))

= B { (aes/27) Pyg(N)In(Q?/p?) + p indep. }

= oy dz &V Pyq(z)

2
= op fdo |(ZN1o1) "

0y 1l —=x
o N 1 2
= —"Cpla v ——2 14
T m=2m N(N +1)
_ _%s _(1)
= —_ 7INS
03

Hint: (1—z?)/(1—2)=14=z...(1—2%) /(1 —x) = -] z¥
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e Solution and scale breaking.

d _ _
p— dns(N, p?) = —yns(N, as(p)) éns(INV, p?)

dp
NSV = ONs (N ) e _; /5(2)2 d;f NS (N, as(p)) }
4
(4,07 = v, @) [P/
In(Q5/AQcp)

Hint:
47

OéS(Q) — /BO ln(Qz/AQQCD)

(1)
. B o (02)) 2 /Bo
So also: ¢Ng(IV, Qz) = ¢Ns (N, Q(z)) (aigg;) :
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Qualitatively,

(1)
as(Q2)) 2N /P

aS(Qz)

Q_SNS(Na Qz) — Q_SNS(Na Q(z)) (

e Is ‘mild’ scale breaking, to be contrasted to

e Case of ag — g # 0, get a power (Q-dependence:

(1
Y
Q%
e = QCD'’s consistency with the Parton Model (73-74)

)as
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¢ Inverting the Moments.

udcfu Pns(N, 1?) = —yn(as(p)) dns(N, p?)

U

d | dE

o bqq(x, n?) = [ c Pns(z/&, as(p)) éns(€, 1)

Splitting function <+ Anomalous dimensions

/01 dr CUN_l qu(wa as) — ’YNS(Na CVS)
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e Singlet (Full) Evolution

d 2 1 9

Nd“ qbb/A(maF’J ) = b:qz,_,G ¢ Pap(x /&, as(p)) qbb/A(‘SaN )

e The Physical Context of Evolution

— Parton Model: ¢,/ (x) density of parton a with
momentum fraction x, assumed independent of ()

— PQCD: qba/A(w,u): same density, but
with transverse momentum < u
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o If there were a maximum transverse momentum Q,
each qba/h(a:, Qo) would freeze for u > Q.

e Not so in renormalized PT.

e Scale breaking measures the change in the density
as maximum transverse momentum increases.

e Cross sections we compute still depend on our
choice of i through uncomputed “higher orders” in C
and evolution.
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e Evolution in DIS (with nice, old CTEQ®6 fits)

F>(x,Q%)+offset

1.5

x=0.00013
2.5 / x=0.0002
x=0.0008%0005

H1 data
low x values

10 20

50 100 200
Q* [GeV?]

500 1000
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Conclude with a few comments ...

e Factorization, although powerful, is brittle. To apply it, we
must define our cross sections to be “sufficiently inclusive”.
We have to be able to apply an analog of the optical theorem
as in DIS, recall:
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e Event generators for showering depend on the physics of fac-
torization: each sequential branching (gluon emission, pair
creation) is independent. A series of “mini-factorizations”.

e The key to applications of perturbative QCD is to avoid un-
controlled dependence of long-distance physics. It must either
cancel or be factorized from calculable quantities.

e Once factorized, we can learn about long-distance parts by
experiment, and bring other methods to bear on them.

e In its own terms, pQCD will give sensible answers if you ask
the right questions.
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Appendix: Intuitive description of factorization in
hadron-hadron scattering

e General relation for hadron-hadron scattering for a hard, in-
clusive process with momentum transfer M to produce final

state F + X: (up = pp = 1)

dJH1H2(p19 P2, M) —
azb /()1 dfa dgbd&ab%F—l—X (gapla ngQ, M, :u’)
X¢a/Hl (€a7 p’) ¢b/H2(€b9 I'l')a

e Factorization proofs justify of the universality of the parton
distributions.

e Also underly a range of generalizations of evolution: resum-
mations (see l. Stewart lectures!).
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e Two examples that illustrate the application and limitations
of factorization in hadron-hadron scattering.

1. p4+p — v+ ~: (similar to Drell-Yan — Q7 factorization)

This gluon
will factor into
the two PDFs

For photons no final state interactions

Factorization for measured (q+q’)"2 and (q+q’) T
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2. p+p — g(get) + g(get): (TMD factorization doesn’t
apply)

This gluon
will factor into
the two PDFs

This gluon doesn’t change g+q’

For final state gluons the total momentum
may be changed by momentum transfers

of order 1/(proton size)
Doesn’t matter much for (q+q’)"2
But really affects (g+q’) T
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e The physical basis of factorization in classical fields

Q:?DD%

-A= ¢cfit’-x, wé _ ,BCt,

e Why a classical picture isn’t far-fetched ...

The correspondence principle is the key to
to IR divergences.

An accelerated charge must produce classical radiation,

and an infinite numbers of soft gluons are required
to make a classical field.
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Transformation of a scalar field:

b(z) = ! !

— Iy —
@ +api2 = P T @hg A

From the Lorentz transformation:
r3 = —v(Bct’ — x4) = vA.

Closest approach is at A =0, i.e. t/ = ﬂlcazé .

The scalar field transforms “like a ruler’: At any fixed
A # 0, the field decreases like 1/~ = |1 — 32.
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x,y,z, 7/ l_X"V"Z'[
A= cBt'-x;
field x frame x’' frame

scalar I%I W
gauge (0) @)= A = e

field strength E3(x) = ﬁ Ej(x') = M—lﬁw
Gauge fields : E3 ~ A9, E3 ~~7?

e The “gluon” A is enhanced, yet is a total derivative:

s,
AP = a, In (A(t',25))+ 01 —8) ~ A~

/
T

e The “large” part of A* can be removed by
a gauge transformation!
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e The “force” E field of the incident particle does not
overlap the “target” until the moment of the scattering.

e “Advanced” effects are corrections to the total derivative:

2
1-5 ~ ; 11— p2f ~

™m
2E2

e Power-suppressed! These are corrections to factorization.

e At the same time, a gauge transformation also induces
a phase on charged fields:

q(x) = q(x) e

Cancelled if the fields are well-localized < o inclusive

tIn(A)
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e Initial-state interactions decouple from hard scattering

e Summarized by multiplicative factors: the parton distribu-
tions.

= Cross section for inclusive hard scattering is IR safe,
with power-suppressed corrections.

e Factorizing dynamics at short and long distance can be built
into effective field theories based on the QCD Lagrangian: in
particular “soft-collinear effective field theory” (SCET) can
streamline many applications.

e What about cross sections where we observe specific
particles in the final state? Single hadrons, dihadron
correlations, etc?
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e Much of the same reasoning holds:

@< @Q@ N

X; < Pct

e For single-particle inclusive ...

Interactions after the scattering are too late to affect
large momentum transfer, creation of heavy particle, etc.

The fragmentation of partons to jets is too slow to know
details of the hard scattering: factorization of fragmentation

functions.
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