30 Hadronic Structure for FEIC:
QCD, SCET, resummation, ...

Ous Focus:
$\frac{\text { Transverse Momentun Dependendent }}{\text { Parton Distributions }} \leftarrow$ TMO $]$ TMD $_{S}$

Refs: TMD Handbook (2304.03302), primorily Ch. 2

- EFFT course (irnk posted) fer more on SCET
- Can description of other 3D distributions importort at EIC in Chill \& Refs cited thare. Eg GPD
TMD Motivation
- explore mysterys of relativistic bound ponticles \rightarrow proton momenta of portons \rightarrow distributions $f\left(x, k_{T}\right)$
spin - k_{T} quontum correlations, $k_{T} \cdot S_{T} g_{1_{T}}^{\perp}$ Worm-geor $\epsilon_{T}^{\alpha \beta} k_{T \alpha} S_{T \beta} f_{1 T}^{1}$ Sivers
- Precision physics, Higgs q_{T}, Drell-Yon q_{T}

$$
p p \rightarrow H+x \quad P p \rightarrow\left(\mu^{+} \mu^{-}\right)+x
$$

- Improve understandin of Confinemant $f\left(x, k_{T}\right)$ \& Hadronization $D\left(z_{h}, P_{T}\right) \rightarrow E I \subset!$
- Goals:

Connect Measure ments to $T M O S \rightarrow$ Factorization
TMD Universality \rightarrow Wilson lines al loops
Perturbotive \& Non-Pert. $Q \subset D \rightarrow$ Expansions
Obtain Accurate Predictions \rightarrow Lorge Logs \& Resummation

Interesting QFT rigor!'

Drell-Yen $\quad p p \rightarrow\left(\mu^{+} \mu^{-}\right)+X \quad$ cm frame P_{A}^{+}, P_{B}^{-}big $-z-$

$$
\begin{array}{ll}
P_{T}^{A}=P_{T}^{B}=0 & s \leqslant 2 P_{A}^{+} P_{b}^{-} \\
q^{r}=\left(q^{+}, q^{-}, \vec{q}_{T}\right), & q^{ \pm}=\frac{q^{0} \pm q^{z}}{\sqrt{2}} \\
Q^{2}=q^{2}=2 q^{+} q^{-}-q_{+}^{2} & q_{T}=\left|\vec{q}_{T}\right|
\end{array}
$$

vars: $\left\{Q^{2}, Y, \vec{q}_{T}\right\}$
TMD When valid?

$$
d \sigma \sim \int d^{2} k_{T} d^{2} k_{T}^{\prime} \quad \underbrace{f_{i / p}\left(x_{a}, k_{T}, \ldots\right)} f_{j / \rho}\left(x_{6}, \hat{k}_{T}^{\prime}, \ldots\right) \delta^{2}\left(\bar{q}_{T}-k_{T}-k_{T}^{\prime}\right)
$$

acts like probability to find pork i with x_{a}, k_{T}
$X_{a}=\frac{Q e^{Y}}{\sqrt{s}} \bumpeq \frac{q^{+}}{P_{A^{+}}}$quark momentum fraction e hard collision (similar $X_{b}=Q e^{-r / \sqrt{s}}$)
$\delta_{\tau} \neq 0 \rightarrow$ intrinsic $k_{T} \sim \wedge Q Q D$, or from radiation small or most sensitive to intrinsic

Semi - Inclusive DIS (SIDIS) $e^{-}+p \rightarrow e^{-}+\underbrace{h}_{n}\left(P_{h}\right)+X$

$$
\begin{aligned}
& q^{2}=-Q^{2}<0 \\
& x=\frac{Q^{2}}{2 p \cdot q}, y=\frac{p \cdot q}{p \cdot l}, \quad z h=\frac{p \cdot p h}{p \cdot q}
\end{aligned}
$$

Hadron - Hadron Frame: $\quad \mathbb{P}_{T}=0, P_{h T}=0: \quad q_{T}=P_{T}{ }^{\prime}-k_{T}$
Photon-Hadion Frame: $\mathbf{P}_{T}=0, q_{T}=0: \quad\left(-\frac{P_{h T}}{z_{h}}=\frac{-P_{T}}{z_{h}}-k_{T}\right)$

$$
P_{h T}=P_{T}+z_{h} k_{T}
$$

R hadron Trans. Mom.

$$
d \sigma \sim \int d^{2} k_{T} d^{2} P_{T} \quad f i / p\left(x, k_{T}\right) \underbrace{D_{i / h}\left(z_{h}, P_{T}\right)} \delta^{2}\left(P_{h T}-z_{h} k_{T}-P_{T}\right)
$$

fragmentation of quark i to hadron h with momentum friction $Z_{h} \&$ trans. momentum P_{T} relative to quark
[Handbook pg.57-58]
"Peel the Onion"
Use DY for simplicity

Hand book
(1) $\{2,1,2,2$
(2) $\$ 2.2$
(3) $\$ 2.3$
(4) $\oint 2,4$

Layer
(1) Factorization Observables \longleftrightarrow TMOs
(a) Collinear Factorization $\quad \int d^{2} q_{T} \quad Q^{2} \gg \Lambda_{Q C O}^{2}$

$$
\frac{d \sigma}{d Q^{2} d Y}=\int_{X_{a}}^{1} d \xi_{a} \int_{X b}^{1} d q_{b} f_{i / p}\left(\eta_{a}, \mu\right) f_{j / p}\left(\eta_{b}, \mu\right) \frac{d \hat{\sigma}_{i j}\left(r_{a, b}, \mu\right)}{d Q^{2} d Y}\left[1+G\left(\frac{\Lambda_{Q^{2} O}}{Q^{2}}\right)\right]
$$

Fact. Scale $=$ Renormalization Scale for PDF operator.
$\xi_{a}=x_{a}$ at tree level
$\varphi_{a}>x_{a}$ due to gluon radiation, two scales Q, MQCD "hard" n collinear"

final state $c u t^{t}$

$p^{2} \gtrsim \mu^{2}$
$\hat{\sigma}_{i j}^{(1)} f_{i}^{(0)} f_{j}^{(0)}$

$p^{2} \lesssim \mu^{2}$

Why do PDF gluons de couple / factorize? Heuristically...
From point of view of i 's radiation, fort mooing j looks like line of color chorge ff (cloy light -cone)

$\left[\begin{array}{c}5 C E T \\ \text { build }\end{array}\right.$
building blocle fields]

Fexercise (1): Wilson-Line from One-Gluon
See TMD handbook page 34 for Light-Cone basis Consider how collinear glunn with Kinematics of parton j looks from point of view of parton i.

$$
\left.\begin{array}{lll}
P_{i}^{\mu} \sim\left(\begin{array}{l}
+ \\
Q
\end{array}, \Lambda^{2}, \perp\right. \\
\Lambda
\end{array}\right) \quad \bar{n} \text { collinear } \quad \bar{n}^{\mu}=(1,0,0)
$$

momentum compatible with energetic protons Q with $P_{\perp} \sim 1$ fluctuations
Let gluon have $k^{\mu} \sim\left(\frac{\Lambda^{2}}{Q}, \bar{Q}, \Lambda\right)$ like P_{j}^{μ}.
Try to attach it to $P_{i} \mu$:

Since gluons appear from covariant derivetrivs their site frocks their momentum $i 0^{\mu}=\underbrace{\dot{i} \partial^{\mu}}_{k^{\mu}}+g A^{\mu}$
So $\not^{A}(k)=\alpha \bar{n} \cdot \epsilon^{A}(k)+\cdots$

$$
\therefore K^{-} \& A^{-}
$$

ϵ^{-}lorgest part big!

Expend and keep leading term:

$$
\frac{(+g)\left(\not p_{i}+\hbar\right)}{\left(p_{i}+h\right)^{2}+i 0} \not \propto \bar{n} \cdot \epsilon^{A} T^{A}=\underbrace{\text { Expand }}_{\text {Exercise a }}=\underbrace{\frac{g \bar{n} \cdot \epsilon^{A} T^{A}}{\bar{n} \cdot k+i 0} \frac{\nsim \alpha}{2}}_{*}
$$

Exercise (b) Check that Momentum space are gluon component projector. Feynman Rule for wilson line reproduces $*$.

Even with arbitrary gluon \& quark radiation!

$$
\begin{aligned}
& / / \gamma=w[\gamma]=w i l \text { son Line }=p \exp \left[-i g \int_{\gamma} d x^{\mu} A_{\mu}^{c}(x) t^{c}\right] \\
& \gamma=\text { path. }
\end{aligned}
$$

Lecture 2
Tain Stewart
Recap
(a) Collinear Factorization $\int d^{2} q_{T} \quad Q^{2} \gg \Lambda_{Q \subset O}^{2}$

$$
\frac{d \sigma}{d Q^{2} d Y}=\int_{x_{a}}^{1} d \xi_{a} \int_{X b}^{1} d r_{b} f_{i / p}\left(r_{a}, \mu\right) f_{j / p}\left(r_{b}, \mu\right) \frac{d \hat{\sigma}_{i j}\left(r_{a, b}, \mu\right)}{d Q^{2} d Y}\left[1+G\left(\frac{\Lambda_{a}^{2} c o}{Q^{2}}\right)\right]
$$

get straight line

$$
\begin{aligned}
& b^{-}=x^{-} \\
& \text {in Lecture l } \\
& (\text { sorry) }
\end{aligned}
$$

$$
f_{i}^{\text {bare }}(\eta) \equiv \int \frac{d b^{-}}{2 \pi} e^{-i \xi p^{+} b^{-}}<p|\bar{\psi}_{i} \underbrace{\left(b^{-}\right) \frac{\gamma^{+}}{2} W[\gamma] \psi_{i}(0)}_{\text {gauge invariant }}| p\rangle
$$

prob. of finding parton i with momentum fraction \& inside proton
(b) $q_{T}^{2} \sim Q^{2}$

$$
\frac{d \sigma}{d Q^{2} d y d q_{T}^{2}}=\int d \xi_{a} d \xi_{b} f_{i / p}\left(r_{a}, \mu\right) f_{j / p}\left(r_{b}, \mu\right) \frac{d \hat{\sigma}_{i j}\left(\xi_{a, b, \mu}\right)}{d Q^{2} d Y d q_{T}^{2}}\left[1+G\left(\frac{\Lambda_{Q C O}^{2}}{q_{T}^{2}, Q^{2}}\right)\right]
$$

$$
\begin{aligned}
& \text { (c) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { or } \\
& 8_{6}^{2} \text { ~ taco nonpert. } \\
& \frac{d \sigma}{d Q^{2} d Y d^{2} \vec{q}_{T}}=H_{i \tau}\left(Q^{2}, \mu\right) \int d^{2} k_{T} f_{i / p}\left(x_{a}, \vec{k}_{T}, \mu, \ldots\right) f_{\tau / p}\left(x_{b}, \vec{q}_{T}-k_{T}, \mu, \ldots\right) \\
& *\left[1+O\left(\frac{q^{2}}{Q^{2}}, \frac{\Lambda_{Q^{2}}^{2}}{Q^{2}}\right)\right] \\
& =H_{i \tau}\left(Q^{2}, \mu\right) \int d^{2} b_{T} e^{i \bar{q}_{T} \cdot b_{T}} \tilde{f}_{i / p}\left(x_{a}, t_{T}, \mu, \ldots\right) \tilde{f}_{\tau / p}\left(x_{b}, b_{T}, \mu, \ldots\right)
\end{aligned}
$$

- no ξ_{a}, ξ_{b} ?

$$
\begin{aligned}
& q_{a}=x_{a} \\
& q_{b}=x_{b}
\end{aligned}
$$

hard scale corrections purely virtual

- What if we expand (b) with $\hat{Q}_{Q C O}^{2} \ll q_{T}^{2} \ll Q^{2}$ \& compose with (c)?

TM PDF \longleftrightarrow collinear PDF

$$
\begin{aligned}
& f_{i}\left(x, k_{T}, \mu, . .\right)=\sum_{j} \int_{x}^{1} \frac{d \xi}{q} C_{i j}\left(\frac{x}{q}, k_{T}, \mu, \cdot \cdot\right) f_{j}(\xi, \mu) *\left[1+\mathcal{O}\left(\frac{n_{Q_{0}^{2}<0}^{2}}{k_{T}^{2}}\right)\right] \\
& \text { perturbative } k_{T} \\
& H_{i i} \int_{T} C_{i j}{ }^{\otimes} C_{i j}=\frac{d \hat{\sigma}_{j J}\left(\xi_{a, b, \mu}\right)}{d Q^{2} d T d q_{T}^{2}} \text { expanded } \quad q_{T}^{2} \ll Q^{2}
\end{aligned}
$$

Layer
(2) TMD Factorization Thy II : rapidity soles

- What type of radiation is allowed? infrared

soft $\sim\left(q_{T}, q_{T}, q_{T}\right)$ $\rightarrow \mu_{2}^{\mu}$ soft, wide angle
distinguish? by rapidity $U=$ "rapidity cutoff"

$$
Y_{\text {collinear }} \simeq \frac{1}{2} \ln \left(\frac{Q^{2}}{\theta_{T}^{2}}\right)>Y_{\text {soft }} \simeq \frac{1}{2} \ln (1)
$$

think: $\quad q_{T} e^{24} \geq 0$

$$
\nu \geqslant 8_{T} e^{2 Y}
$$

- Full factorization must decouple "Glouber" region, covered here
- Traditional QCD Fact, approx for graphs in different mom. regions SCET $=$ fields for diff. mom. regions with expanded \mathscr{L}.

Draw Figure first

$$
\begin{aligned}
& \frac{d \sigma}{d Q d y d^{2} q_{T}}= H_{i \tau}\left(Q^{2}, \mu\right) \int d^{2} b_{T} e^{i \bar{q}_{T} \cdot b_{T}} \tilde{B}_{i / p}\left(x_{a}, t_{T}, \mu, \bar{y}_{a}\right) B_{i / p}\left(x_{b}, b_{T}, \mu, \frac{\left.y_{b}\right)}{v^{2}}\right) \\
& * \tilde{S}\left(b_{T}, \mu, \nu\right) \\
&= H_{i \tau}\left(Q^{2}, \mu\right) \int d^{2} b_{T} e^{i \bar{q}_{+} \cdot \bar{b}_{T}} \tilde{f}_{i / p}\left(x_{a}, b_{T}, \mu, y_{a}\right) f_{i / p}\left(x_{b}, b_{T}, \mu, y_{b}\right) \\
& 0 \tilde{f} \equiv \tilde{B} \sqrt{\tilde{S}} \quad \text { indep. of } 0
\end{aligned}
$$

- Collins - Toper Scales

$$
\begin{array}{ll}
y_{a} \simeq 2\left(x_{a} P_{A}^{+}\right)^{2} & e^{-2 y_{n}}
\end{array} \begin{aligned}
& \text { residual } \\
& \text { freedom in } \\
& \text { now we split }
\end{aligned} \quad y_{a} y_{b}=\mathbb{Q}^{4}
$$

- Mention RGE in $\mu * y$

Layer (3) Operators (finally) use bare \tilde{B}, \tilde{S}

- UV regulator dimireg. $d=4-2 \epsilon$, scale μ
- Rapidity regulator τ, scale \supset It's an onion...

Un sub. PDF

$$
f_{i / p}^{(u)}=\int \frac{d b^{-}}{2 \pi} e^{-i b^{-} x p^{+}}\langle p|\left[\bar{\psi}_{i}\left(b^{p}\right) \frac{\gamma^{+}}{2} \omega_{E} \psi_{i}(0)\right]_{\tau}|p\rangle
$$

- $\quad b^{\mu}=\left(0, b^{-}, b_{T}\right)$
separated also by \vec{b}_{T}
- Staple shaped wilson line
- generated by expansions that

- encode initial state interactions gauge invariant operator
- reduces to bare collinear PDF for $b_{T} \rightarrow 0$ ($\left.\begin{array}{c}\text { ot true for } \\ \text { renormalized }\end{array}\right)$

Soft F_{n}

$$
\left.\tilde{S}\left(b_{T}, \epsilon, \tau\right)=\frac{1}{N_{c}}<0\left|\left[\begin{array}{ll}
T_{r} & W_{B}\left(b_{T}\right)
\end{array}\right]_{\tau}\right| 0\right\rangle
$$

- 2 stapler posted together \longleftrightarrow soft approx to fields
 for both protons
- closed loop, 6 sides (gaze inv.)

$$
\tilde{S}\left(b_{T} \rightarrow 0, \epsilon, \tau\right)=1
$$

Subtraction
$\tilde{S}^{\text {subt }}=$? depends on choice for τ

- remove infrared double counting btw $\tilde{f}^{(u)}$ and \tilde{S}
- many choices possible for τ (Sec. 2.4 of Hand book)
Common: $\tilde{S}^{\text {subt }}=\tilde{S}$
but also: $\quad \tilde{s}^{\text {subs }}=1$ passible

Layer Rapidity Regulators Why do we need T ?
(4)

$$
\int_{Q_{T}}^{Q} \frac{d k^{+}}{k^{+}}=\lim _{\tau \rightarrow 0}[\underbrace{\int_{0}^{Q} \frac{d k^{+}}{k^{+}} R_{c}(k, \tau, j)}_{\text {collinear approx }}+\underbrace{\int_{q_{T}}^{\infty} \frac{d k^{+}}{k^{+}} R_{S}(k, \tau, v)}_{\text {soft approx }}]
$$

ship must expand to derive factorization
Examples

- Collins , Space-Like Wilson Lines $\frac{\sqrt{\tilde{S}}}{\tilde{S}^{\text {sob }}} \rightarrow \frac{1}{\sqrt{\tilde{s}}}$
light-cone $\left(0,1, O_{T}\right) \rightarrow\left(-e^{2 y_{B}}, 1, O_{T}\right)$ with $Y_{B} \rightarrow-\infty$

$$
\begin{aligned}
& \tilde{f}_{i / p}\left(x, b_{r}, \mu, y\right)=\lim _{\epsilon \rightarrow 0} z_{u v}(\mu, y, \epsilon) \lim _{\tau_{B} \rightarrow-\infty} \frac{\tilde{f}_{i / \rho}^{(\mu \tau}\left(x, b_{T}, \epsilon, y_{B}, x_{\rho^{+}}\right)}{\sqrt{\tilde{S}\left(b_{T}, \epsilon, 2 y_{n}-2 y_{B}\right)}} \\
& \text { here } y=2\left(x^{\rho^{+}}\right)^{2} e^{-2 y_{n}}
\end{aligned}
$$

- η regulator Chis, Jain, Veil, Rothstein $\eta \rightarrow 0$
introduce $\left|\sqrt{2} k^{+} / v\right|^{-\eta}$ in $\frac{\text { Wilson Lines }}{\omega_{[}} \rightarrow \int \frac{d k^{+}}{k^{+}}\left|\frac{\sqrt{2} k^{+}}{v}\right|^{-\eta}$

$$
\begin{aligned}
\left|k^{z} / v\right|^{-\eta / 2} \text { in }\left.W_{B} \gg\left|\frac{d k^{+} d k^{-}}{k^{+}+k^{-}}\right| \frac{k^{z}}{v}\right|^{-\eta} \\
\tilde{f}_{i / p}\left(x, b_{r}, \mu, y\right)=\lim _{\epsilon \rightarrow 0} z_{u v}(\mu, y, \epsilon) \lim _{\eta \rightarrow 0} \tilde{f}_{\left(x, b_{r}, \epsilon, \eta, x p^{+}\right)}^{(u)} \widetilde{\tilde{s}\left(b_{T}, \epsilon, \eta\right)} \\
\tilde{s}^{\text {sub }}=1 \text { here }
\end{aligned}
$$

- different $\tilde{f}^{(u)}, \tilde{s}$ but same $\tilde{B}_{i / p} \&$ Eur
- mom constructions ($\$ 2.4 .1$) yield same $\tilde{f}_{i / p}$) but not all ($\$ 2.5$)

One-Loop Illustration of Concepts
proton \rightarrow quark state $d=4-2 \epsilon$ for $U V$ \& IR, Feynman Gouge
n-regulator: $\tilde{f}^{(u)}, \tilde{S}, \tilde{S}^{\text {supt }}=1 \quad$ Exercise $\# 2$ Go through this, see $\oint 2.4 .2$ of Hand book
bore

$$
\tilde{f}_{q / q}^{(u)}\left(x, b_{T}, \epsilon, \eta, x p^{+}\right)=\int \frac{d b^{-}}{2 \pi} e^{-i b^{-} x p^{+}}\left\langle q^{\prime}(p)\right|\left[\bar{\psi}\left(b^{\mu}\right) \omega_{[} \frac{\gamma^{+}}{2} \psi(0)\right]_{\eta}\left|q^{\prime}(p)\right\rangle
$$

+ mirror
(b)

(a)

$$
p^{\mu}=\left(p^{+}, 0,0\right), p^{2}=0
$$

(careful)

O as light-like lines $n^{\mu} n \mu=0$ transit e $\infty=0$

$$
\overline{m s} \quad g_{0}=z_{g} \mu \epsilon g(\mu)\left(\frac{e^{\gamma_{E}}}{4 \pi}\right)_{\gamma}^{\epsilon / 2}
$$

$$
m_{a}+m_{b}=\frac{\alpha_{s}(\mu) c_{F}}{2 \pi}[\underbrace{\frac{1+x^{2}}{1-x}}_{\rho_{q q}(x)}-\epsilon(1-x)] r(-\epsilon)\left(\frac{b_{r}^{2} \mu^{2}}{4 e^{-\gamma_{E}}}\right)^{\epsilon} R_{c}
$$

singular as $x \rightarrow 1$ ie $k^{+} \rightarrow 0$

$$
\begin{aligned}
& 0 \bar{\xi}_{\xi_{k}}^{b}=-90 \frac{n b^{\mu} t^{a} e^{-i k \cdot b}}{n b \cdot k+i 0} \\
& a, \mu^{2}+\frac{90 n b^{\mu} t^{a}}{n b \cdot k-i o} \\
& \text { shorthand here } \\
& m_{a}=-i g_{0}^{2} C_{F} \int d^{d} k \int d b^{-} e^{-i b^{-} \times p^{+}} e^{i(p-k) \cdot b} \frac{\bar{u} \gamma^{\mu}(p-k) \gamma^{+}(p-k) \gamma_{\mu} u R_{c}}{2\left[(p-k)^{2}+i 0\right]^{2}\left(k^{2}+i 0\right)} \\
& M_{b}=-2 i g_{0}^{2} C_{F} \int \delta^{d} k \underbrace{\int\left[(1-x) p^{+}-k^{+}\right] e^{i b_{T} \cdot \vec{k}_{T}}} \int^{\int d b^{-} e^{-i b^{-} \times p^{+}} e^{i(p-k) \cdot b}} \frac{\bar{u} \gamma^{+}(p-k) \gamma^{+} u}{} R_{c})
\end{aligned}
$$

$$
" \eta \text {-reg " } R_{c}=\omega^{2}\left|\frac{\sqrt{2} k^{+}}{v}\right|^{-\tau}=\omega^{2}\left(\frac{(1-x) p^{+}}{\nu / \sqrt{2}}\right)^{-\tau}
$$

Expand

$$
\begin{array}{lll}
\frac{\text { Expand }}{\tau \rightarrow 0} & \text { Use }: & (1-x)^{-1-\tau}=-\frac{1}{\tau} \delta(1-x)+\left(\frac{1}{1-x}\right)++O(\tau) \\
\epsilon \rightarrow 0 & \left(1+x^{2}\right)(1-x)^{-1-\tau}=-\left(\frac{2}{\tau}+\frac{3}{2}\right) \delta(1-x)+\left(\frac{1+x^{2}}{1-x}\right)+\quad G(\tau)
\end{array}
$$

where

$$
\begin{aligned}
& {[f(x)]_{+}=f(x), x \neq 1} \\
& \int_{0}^{1} d x[f(x)]_{+} g(x)=\int_{0}^{1} d x f(x)[g(x)-g(1)], \text { any } g
\end{aligned}
$$

$$
\tilde{S}\left(b_{T}, \epsilon, \tau\right)=\frac{1}{N_{c}}<0\left|\left[T_{r} \omega_{刃}\left(b_{T}\right)\right]_{\tau} 10\right\rangle
$$

+ mirror

$$
R_{s}^{t_{0} t}=\omega^{2}\left|\frac{k^{-}-k^{+}}{s / \sqrt{2}}\right|^{-\tau}
$$

+ mirror
\forall
bare

$$
\begin{aligned}
& \tilde{f}_{q / q}^{(u)}=\delta(1-x)+\frac{\alpha_{s}(\mu) C_{F}}{2 \pi}\left\{-\left(\frac{1}{\epsilon_{I R}}+L_{b}\right)\left[P_{q q}(x)\right]++(1-x)\right. \\
& \\
& \left.+L_{b} \equiv \ln \frac{b_{T}^{2} \mu^{2}}{b_{0}^{2}}, b_{0}=2 e^{-\gamma_{E}},\left(\frac{1}{\epsilon_{u v}}+L_{b}\right)\left(\frac{2}{\tau}+\frac{3}{2}+\ln \frac{J^{2}}{y}\right)+\sigma(\tau)+G(\epsilon)\right\} \\
& \tilde{S}_{q}=1+\frac{\alpha_{s}(\mu) C_{F}}{2 \pi}\left[\frac{2}{\epsilon_{u v}^{2}}+2\left(\frac{1}{\epsilon_{u v}}+L_{b}\right)\left(\frac{-2}{\tau}+\ln \frac{\mu^{2}}{J^{2}}\right)-L_{F}^{2}-\frac{\pi^{2}}{6}\right]
\end{aligned}
$$

$$
\begin{aligned}
& M_{s}=290_{k}^{2} C_{k} \int d d k e^{i t_{T} \cdot k_{t}} \frac{-i}{\left(2 k^{2} k^{-}-k_{T}^{2}+i 0\right)} \frac{1}{\left(k^{+}-i 0\right)\left(-k^{-}+i 0\right)} R_{s} \\
& k^{+}=\frac{k_{1}^{2}}{2 k^{-}}-\text {io for } k^{-}>0 \\
& =\frac{g_{0}^{2} C_{F}}{\pi} \int^{f^{d-2} k_{T}} \frac{e^{i \hbar_{T} \cdot k_{T}}}{k_{T}^{2}} \int_{0}^{\infty} \frac{d k^{+}}{k^{2}} \quad \omega^{2}\left|\frac{k_{T}^{2}}{2 k^{+}}-k^{+}\right|^{-T}\left(\frac{u}{\sqrt{2}}\right)^{\tau}
\end{aligned}
$$

$$
\begin{aligned}
& Z_{u v}^{q}=1-\frac{\alpha_{s}(\mu) C_{F}}{2 \pi}\left[\frac{1}{\epsilon_{u v}^{2}}+\frac{1}{\epsilon_{u v}}\left(\frac{3}{2}+\ln \frac{\mu^{2}}{J}\right)\right] \\
& \begin{aligned}
& \widetilde{f}^{\left(+0_{0} 1-l_{0 o p}\right)} \\
&=\left.\delta, b_{T}, \mu, y\right)=Z_{u v}^{q} \tilde{f}_{q / z}^{(u)} \sqrt{\tilde{S}} \\
&+(1-x)+\frac{\alpha_{s}(\mu) C_{F}}{2 \pi}\left[-\left(\frac{1}{\epsilon_{I R}}+L_{b}\right)\left[P_{q q}(x)\right]+\right. \\
&\left.+(1-x)+\delta(1-x)\left\{-\frac{L_{b}^{2}}{2}+L_{b}\left(\frac{3}{2}+\ln \frac{\mu^{2}}{s}\right)-\frac{\pi^{2}}{12}\right\}\right]
\end{aligned}
\end{aligned}
$$

- expected Ir div.
- $\frac{1}{r}$'s cancel, $\ln \nu^{2}$ cancel

Lecture 3
Recap $L_{2} L_{b} \equiv \ln \frac{b_{T}^{2} \mu^{2}}{b_{0}^{2}}, b_{0}=2 e^{-\gamma_{E}}, \quad y=2\left(x p^{+}\right)^{2}, \quad C_{F}=4 / 3$ bare

$$
\begin{aligned}
& \tilde{f}_{q / q}^{(u)}=\delta(1-x)+\frac{\alpha_{s}(\mu) C_{F}}{2 \pi}\left\{-\left(\frac{1}{\epsilon_{I R}}+L_{6}\right)\left[P_{q q}(x)\right]_{+}+(1-x)\right. \\
&\left.+\delta(1-x)\left(\frac{1}{\epsilon_{u v}}+L_{6}\right)\left(\frac{2}{\tau}+\frac{3}{2}+\ln \frac{\nu^{2}}{y}\right)\right\} \\
& \tilde{S}_{q}=1+\frac{\alpha_{s}(\mu) C_{F}}{2 \pi}\left[\frac{2}{\epsilon_{u v}^{2}}+2\left(\frac{1}{\epsilon_{u v}}+L_{b}\right)\left(\frac{-2}{\tau}+\ln \frac{\mu^{2}}{J^{2}}\right)-L_{b}^{2}-\frac{\pi^{2}}{6}\right] \\
& Z_{u v}^{q}=1-\frac{\alpha_{s}(\mu) C_{F}}{2 \pi}\left[\frac{1}{\epsilon_{u v}^{2}}+\frac{1}{\epsilon_{u v}}\left(\frac{3}{2}+\ln \frac{\mu^{2}}{j}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{f}^{\left(+0 l_{1-10 p}\right)}\left(x, b_{T}, \mu, y\right)=z_{u v}^{q} \tilde{f}_{q / z}^{(u) \text { bare }} \sqrt{\widetilde{S}^{\text {bare }}} \\
&=\delta(1-x)+\frac{\alpha_{s}(\mu) c_{F}}{2 \pi} {\left[-\left(\frac{1}{\epsilon_{I R}}+L_{b}\right)\left[p_{q q}(x)\right]_{+}\right.} \\
&\left.+(1-x)+\delta(1-x)\left\{-\frac{L_{b}^{2}}{2}+L_{b}\left(\frac{3}{2}+9 \frac{\mu^{2}}{g}\right)-\frac{\pi^{2}}{12}\right\}\right]
\end{aligned}
$$

Renormalization Group Evolution
consider anomalous dimensions in α s expansion

$$
\begin{aligned}
\mu \frac{d}{d \mu} \hat{f}_{i / p}(x, b \pi, \mu, y) & =\left(\mu \frac{d}{d \mu} z_{u v}{ }^{i}\right) \tilde{f}^{\text {bore }} \sqrt{\hat{S}^{\text {bore }}} \\
\mu \frac{d}{d \mu} \ln \tilde{f}_{i / \rho} & =\gamma_{\mu}^{q}(\mu, y)=+\left(z_{u v}\right)^{-1} \mu \frac{d}{d \mu} z_{u v}^{q} \\
& \stackrel{1-l_{00 p}}{=} \ldots=\frac{\alpha_{s}(\mu) c_{F}}{\pi}\left(\frac{3}{2}+\ln \mu^{2} / s\right)
\end{aligned}
$$

alters
form

$$
\stackrel{\text { form }}{=} r_{\text {cusp }}\left[\alpha_{s}\right] \ln \mu_{/ \rho}^{2}+\gamma_{\mu}^{b}\left[\alpha_{s}\right]
$$

Note: $\gamma_{\mu}^{a}(\mu, y)$ always perturbative for $\mu \gg \wedge Q<0$. evolve from $\mu \approx 1 \mathrm{GeV}^{\mathrm{V}} \rightarrow \mu \simeq Q$

- rapility RGE $=$ Collins-Sopar Egtn
$y \frac{d}{d y} \ln \tilde{f}_{i / p}\left(x_{1} b_{T}, \mu, y\right)=\frac{1}{2} \gamma_{y}^{q}\left(\mu, b_{T}\right)$ \& known to 4 -loops

$$
=\frac{1-l_{0} \rho}{=}-\frac{\alpha_{s}(\mu) C_{F}}{2 \pi} L_{b}=-\frac{\alpha_{s}(\mu) C_{f}}{2 \pi} \ln \frac{\mu^{2} b^{2} T}{b_{0}{ }^{2}}
$$

evolue fron $\sqrt{y} \simeq 1 \mathrm{GeV}^{\mathrm{J}} \rightarrow \sqrt{y} \simeq Q$
all arders
form

$$
\gamma_{y}^{q}\left(\mu, b_{\tau}\right)=-2 \int_{V_{b_{\tau}}}^{\mu} \frac{d \mu^{\prime}}{\mu^{\prime}} r_{\omega \omega \rho}\left[\alpha_{s}\left(\mu^{\prime}\right)\right]+\gamma_{y}^{q}\left[\alpha_{s}\left(\nu_{b_{r}}\right)\right]
$$

Note: $\gamma_{y}^{q}\left(\mu, b_{T}\right)$ is non-perturbative for $b_{T}^{-1} \sim 1 a c D$

- Both equations needad to sun lorge logs

Resumuation $\quad \alpha_{s} \ln \left(\frac{Q}{Q_{T}}\right) \sim \alpha_{S} \ln \left(Q b_{T}\right) \sim 1$

$$
\begin{aligned}
\widetilde{\sigma}^{W}\left(\boldsymbol{b}_{T}\right)=f_{q}\left(x_{1}\right) f_{\bar{q}}\left(x_{2}\right) C\left[\alpha_{s}\right] \exp & \left\{\frac{\alpha_{s}}{4 \pi}\left(d_{12} L_{b}^{2}+d_{11} L_{b}\right)\right. \\
& +\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left(d_{23} L_{b}^{3}+d_{22} L_{b}^{2}+d_{21} L_{b}\right) \\
& \left.+\left(\frac{\alpha_{s}}{4 \pi}\right)^{3}\left(d_{34} L_{b}^{4}+d_{33} L_{b}^{3}+d_{32} L_{b}^{2}+d_{31} L_{b}\right)\right\}+\ldots
\end{aligned}
$$

LL NLL NNLL N ${ }^{3}$ LL

Bach to SIDIS $\quad e^{-}+p \rightarrow e^{-}+h\left(P_{h}\right)+X$

$$
\begin{aligned}
& q^{2}=-Q^{2}<0 \\
& x=\frac{Q^{2}}{2 p \cdot q}, y=\frac{p \cdot q}{p \cdot l}, \quad z_{h}=\frac{p \cdot p h}{p \cdot q}
\end{aligned}
$$

$$
\begin{array}{r}
\frac{d \sigma}{d \times d y d z d P_{h}^{2}}=\sigma_{0}^{\text {sIDEs }}(x, y, Q) H_{i i}\left(Q^{2}, \mu\right) \int_{0}^{2 \pi} d \not h_{h} \int d^{2} b_{T} e^{i \bar{b}_{T} \cdot \bar{P}_{h T} / z_{h}} \\
* \tilde{f}_{i / p}\left(x, b_{\tau}, \mu, y_{p}\right) \tilde{D}_{h / i}\left(z_{h}, \bar{b}_{\tau}, \mu, y_{h}\right)
\end{array}
$$

TMD fragmentation fr.

$$
\begin{aligned}
& \#\left\langle x h\left(P_{h}\right)\right|\left[\left(\Psi_{i}{ }^{\alpha} \omega \tau_{7}\right)(0)\right]_{\tau}|0\rangle
\end{aligned}
$$

- Analogous except for final state hadron

$$
b=\left(0, b^{-}, \vec{b}_{\tau}\right)
$$

- Use outgoing wilson lines to $+\infty$
- In fact $\tilde{f} i / p$ in SIQIS also has outgoing wilson
lines $+\infty \quad w_{J}$ (rather then prev. $-\infty \omega_{\Gamma}$)
(Does it matter? Weill see it does sometimes!)

Spin Polarized TMDS

- Consider polarized protons \& quarks
- Have 8 TMD PDFS at leading order in $q_{T} \ll Q$

Consider

$$
\Phi_{\alpha \alpha^{\prime}}=\int d b^{-} d^{2} b_{T} e^{-i b^{-} \times p^{+}} e^{i b_{T} \cdot k_{\tau}}\langle p(e, s)|\left[\Psi_{\alpha}^{i}(b) w_{c} \psi_{\alpha^{\prime}}^{i}(0)\right]_{T}|p(p, s)\rangle
$$

$\overbrace{\text { spinor indices }}$
Spin vector s^{μ}

$$
n_{a, b}=\frac{(1,0,0, \pm 1)}{\sqrt{2}}
$$

$$
S^{\mu}=S_{\substack{ \\
\text { longitudind } \\
\text { Spin }}}^{\left(\frac{\left.p^{-} n_{a}^{\mu}-p^{+} n_{b}{ }^{\mu}\right)}{m}+S_{T}^{\mu}\right.} \begin{gathered}
\text { transverse } \\
\text { spin }
\end{gathered}
$$

$$
\begin{aligned}
& -S^{2}=S_{L}^{2}+S_{T}^{2}=\left\{\begin{array}{l}
1 \text { pure state } \\
\text { ar mixed state }
\end{array}\right. \\
& \bar{u} \gamma^{\mu} u=2 e^{\mu} \\
& \bar{u} \gamma^{\mu} \gamma_{5} u=2 m s^{\mu} \\
& u(p, s) \bar{u}(p, s)=\frac{p+m}{2}\left(1+\gamma_{s} \not \phi\right) \\
& \uparrow \text { a hadron } \\
& \text { polaris. }
\end{aligned}
$$

Constraints on I I $^{\prime}$

- no s^{μ} ar linear in S^{μ} * no Tine reversal *
- hermiticity $\Phi^{+}=\gamma_{0} \Phi \gamma_{0}$
- Parity $\Phi^{P}=\gamma_{0} \Phi \gamma_{0}$ in EFT course)
- Good Quark Fields for Leading Order : $\frac{\gamma^{-} \gamma^{+}}{2} \psi^{i}=\psi^{i}$

$$
\begin{aligned}
\Phi= & \frac{1}{2}\left\{f_{1} \gamma^{-}-f^{\perp} \frac{\epsilon_{T}^{e \sigma}}{k_{T e}} \frac{s_{T \sigma} \gamma^{-}}{m}+\left(s_{L} g_{1}-\frac{k_{T} \cdot s_{T}}{m} g_{1 T}^{\perp}\right) \gamma_{5} \gamma^{-}\right. \\
& \left.+h_{1} \delta_{T} \gamma^{-} \gamma_{5}+\left(s_{L} h_{1 L}^{\perp}-\frac{k_{T} \cdot S_{T}}{m} h_{1 T}^{\perp}\right) \frac{k_{T} \gamma^{-} \gamma_{S}}{m}+i h_{1}^{\perp} \frac{k_{T} \gamma^{-}}{m}\right\}
\end{aligned}
$$

Contracting $\quad f_{i / \rho s}^{[r]}=r_{\alpha \alpha}$ I $\Phi_{\alpha \alpha}$, we can write

$$
\begin{align*}
f_{i / p_{S}}^{\left[\gamma^{+}\right]}\left(x, \mathbf{k}_{T}, \mu, \zeta\right)= & f_{1}\left(x, k_{T}\right)-\frac{\epsilon_{T}^{\rho \sigma} k_{T \rho} S_{T \sigma}}{M} \kappa f_{1 T}^{\perp}\left(x, k_{T}\right), \\
f_{i / p_{S}}^{\left[\gamma^{+} \gamma_{5}\right]}\left(x, \mathbf{k}_{T}, \mu, \zeta\right)= & S_{L} g_{1}\left(x, k_{T}\right)-\frac{k_{T} \cdot S_{T}}{M} g_{1 T}^{\perp}\left(x, k_{T}\right), \\
f_{i / p_{S}}^{\left[i \sigma^{\alpha+} \gamma_{5}\right]}\left(x, \mathbf{k}_{T}, \mu, \zeta\right)= & S_{T}^{\alpha} h_{1}\left(x, k_{T}\right)+\frac{S_{L} k_{T}^{\alpha}}{M} h_{1 L}^{\perp}\left(x, k_{T}\right) \tag{2.124}\\
& -\frac{\mathbf{k}_{T}^{2}}{M^{2}}\left(\frac{1}{2} g_{T}^{\alpha \rho}+\frac{k_{T}^{\alpha} k_{T}^{\rho}}{\mathbf{k}_{T}^{2}}\right) S_{T \rho} h_{1 T}^{\perp}\left(x, k_{T}\right)-\frac{\epsilon_{T}^{\alpha \rho} k_{T \rho}}{M} \kappa h_{1}^{\perp}\left(x, k_{T}\right)
\end{align*}
$$

Under $T=T$-reversal $S^{\mu} \rightarrow-S^{\mu}$. Consider $T P$ where $P=$ Parity:

- naively $f_{1+}^{+}, h_{1}^{\perp}$ odd , rest even
- but also switches wilson lines $\quad \begin{aligned} & W_{z} \\ & +\infty\end{aligned} W_{-\infty}$

$$
\therefore\left(f_{1 T}^{\perp}\right)^{\text {SIDES }}=-\left(f_{1 T}^{\perp}\right)^{0 Y} \quad \text { Fomous SIDIS sign -flip }
$$

$$
\left(h_{1}^{\perp}\right)^{s i 0 I S}=-\left(h_{1}^{\perp}\right)^{D Y}
$$

others MOs + sign \therefore equal
Encoded above by:

$$
K=\begin{array}{cc}
+1 & 0 Y \\
-1 & S I D E S
\end{array}
$$

For Later Use, the Fourier trousform

$$
\begin{aligned}
\tilde{f}_{i / p_{S}}^{\left[\gamma^{+}\right]}\left(x, \mathbf{b}_{T}, \mu, \zeta\right)= & \tilde{f}_{1}\left(x, b_{T}\right)+i \epsilon_{\rho \sigma} b_{T}^{\rho} S_{T}^{\sigma} M \tilde{f}_{1 T}^{\perp}\left(x, b_{T}\right), \\
\tilde{f}_{i / p_{S}}^{\left[\gamma^{+} \gamma_{5}\right]}\left(x, \mathbf{b}_{T}, \mu, \zeta\right)= & S_{L} \tilde{g}_{1}\left(x, b_{T}\right)+i b_{T} \cdot S_{T} M \tilde{g}_{1 T}^{\perp}\left(x, b_{T}\right), \\
\tilde{f}_{i / p_{S}}^{\left.i \sigma^{\alpha+} \gamma_{5}\right]}\left(x, \mathbf{b}_{T}, \mu, \zeta\right)= & S_{T}^{\alpha} \tilde{h}_{1}\left(x, b_{T}\right)-i S_{L} b_{T}^{\alpha} M \tilde{h}_{1 L}^{\perp}\left(x, b_{T}\right)+i \epsilon^{\alpha \rho} b_{\perp \rho} M \tilde{h}_{1}^{\perp}\left(x, b_{T}\right) \\
& +\frac{1}{2} \mathbf{b}_{T}^{2} M^{2}\left(\frac{1}{2} g_{T}^{\alpha \rho}+\frac{b_{T}^{\alpha} b_{T}^{\rho}}{\mathbf{b}_{T}^{2}}\right) S_{\perp \rho} \tilde{h}_{1 T}^{\perp}\left(x, b_{T}\right) .
\end{aligned}
$$

The k_{T} profactors complicate the Fourier transform:

$$
\begin{aligned}
& \tilde{f}_{1}\left(x, b_{T}\right) \equiv \tilde{f}_{1}^{(0)}\left(x, b_{T}\right), \quad \tilde{f}_{1 T}^{\perp}\left(x, b_{T}\right) \equiv \tilde{f}_{1 T}^{\perp(1)}\left(x, b_{T}\right), \quad \tilde{h}_{1 T}^{\perp}\left(x, b_{T}\right) \equiv \tilde{h}_{1 T}^{\perp(2)}\left(x, b_{T}\right) \\
& \tilde{g}_{1 L}\left(x, b_{T}\right) \equiv \tilde{g}_{1 L}^{(0)}\left(x, b_{T}\right), \quad \tilde{h}_{1}^{\perp}\left(x, b_{T}\right) \equiv \tilde{h}_{1}^{\perp(1)}\left(x, b_{T}\right), \\
& \tilde{h}_{1}\left(x, b_{T}\right) \equiv \tilde{h}_{1}^{(0)}\left(x, b_{T}\right) \quad \tilde{g}_{1 T}\left(x, b_{T}\right) \equiv \tilde{g}_{1 T}^{(1)}\left(x, b_{T}\right), \\
& \text { (2.128) } \\
& \tilde{h}_{1 L}^{\perp}\left(x, b_{T}\right) \equiv \tilde{h}_{1 L}^{\perp(1)}\left(x, b_{T}\right) \text {. } \\
& \tilde{f}^{(n)}\left(x, b_{T}, \mu, \zeta\right) \equiv n!\left(\frac{-1}{M^{2} b_{T}} \partial_{b_{T}}\right)^{n} \tilde{f}\left(x, b_{T}, \mu, \zeta\right) \\
& \text { (2.129) } \\
& =\frac{2 \pi n!}{\left(b_{T} M\right)^{n}} \int_{0}^{\infty} \mathrm{d} k_{T} k_{T}\left(\frac{k_{T}}{M}\right)^{n} J_{n}\left(b_{T} k_{T}\right) f\left(x, k_{T}, \mu, \zeta\right) \\
& \text { Q Bessel in. order } n \text { from } \int_{0}^{2 \pi} d \phi
\end{aligned}
$$

A similar Spin decomposition con be done for

- Quark TMD FF
- Gluon TMD PDF \& FF s
see $\{2.7$ of Hand book

We'll need:
Leading Quark TMDFFs $\circlearrowleft \rightarrow$ Hadron Spin \odot Quark Spin

Polarized Drell-Yan $\pi\left(p_{\pi}\right)+p\left(p_{p}, s\right) \rightarrow q^{q^{\mu}} / z \rightarrow l^{+} l^{-} X$

Angles θ, ϕ, ϕ_{s} de fined in Collins-Soper frome

- ($\left.l^{+} t^{-}\right)$at rest
- $P_{\pi T}=P_{P T}=\frac{q_{T}}{2}$

Leading for $q_{T} \ll Q$

Structure Functions $F=F\left(x_{\pi}, x_{p}, q_{T}, Q^{2}\right)$

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d}^{4} q \mathrm{~d} \Omega}=\frac{\alpha_{\mathrm{em}}^{2}}{\mathscr{F} Q^{2}} & \left\{\left[\left(1+\cos ^{2} \theta\right) F_{u U}^{1}+\sin ^{2} \theta \cos (2 \phi) F_{u U}^{\cos 2 \phi}\right]\right. \\
& +S_{L} \sin ^{2} \theta \sin (2 \phi) F_{u L}^{\sin 2 \phi} \\
& +S_{T}\left(1-\cos ^{2} \theta\right) \sin \phi_{S} F_{u T}^{\sin \phi_{S}} \\
& \left.+S_{T} \sin ^{2} \theta\left[\sin \left(2 \phi+\phi_{S}\right) F_{u T}^{\sin \left(2 \phi+\phi_{S}\right)}+\sin \left(2 \phi-\phi_{S}\right) F_{u T}^{\sin \left(2 \phi-\phi_{S}\right)}\right]\right\}
\end{aligned}
$$

$\begin{array}{cc}\pi \overbrace{\text { polarization }} \\ \text { unpol. } & \text { of proton }\end{array}$
π
$u \sim$ pollarization

Factorization

$$
\begin{array}{rlrl}
F_{U U}^{1} & =\mathcal{B}\left[\tilde{f}_{1, \pi}^{(0)} \tilde{f}_{1, p}^{(0)}\right], & & \leftarrow \text { Unpol. } 2 \\
F_{U U}^{\cos 2 \phi} & =M_{\pi} M_{p} \mathcal{B}\left[\tilde{h}_{1, \pi}^{\perp(1)} \tilde{h}_{1, p}^{\perp(1)}\right], & & \leftarrow \text { Boer-Mulders } 2 \\
F_{U L}^{\text {sin } 2 \phi} & =-M_{\pi} M_{p} \mathcal{B}\left[\tilde{h}_{1, \pi}^{\perp(1)} \tilde{h}_{1 L, p}^{\perp(1)}\right], & & \leftarrow \text { " } 11 \text { \& Worm-Gear } \\
F_{U T}^{\text {sin } \phi s} & =M_{p} \mathcal{B}\left[\tilde{f}_{1, \pi}^{(0)} \tilde{f}_{1 T, p}^{\perp(1)}\right], & & \leftarrow \text { unpol, \& Sivers } \\
F_{U T}^{\sin (2 \phi-\phi s)} & =-M_{\pi} \mathcal{B}\left[\tilde{h}_{1, \pi}^{\perp(1)} \tilde{h}_{1, p}^{(0)}\right], & & \leftarrow \text { Boe--Mulders \& Transuersity } \\
F_{U T}^{\sin (2 \phi+\phi s)} & =-\frac{M_{\pi} M_{p}^{2}}{4} \mathcal{B}\left[\tilde{h}_{1, \pi}^{\perp(1)} \tilde{h}_{1 T, p}^{\perp(2)}\right] . & & \leftarrow \text { BoerMulders \& Pretzelosity } \\
\mathcal{B}\left[\tilde{f}_{\pi}^{(m)} \tilde{f}_{p}^{(n)}\right] \equiv \sum_{i} H_{i i}(Q, \mu) \int_{0}^{\infty} \frac{d b_{T}}{2 \pi} b_{T} b_{T}^{m+n} J_{m+n}\left(q_{T} b_{T}\right) \tilde{f}_{i / p}^{(m)}\left(x_{a}, b_{T}, \mu, \zeta_{a}\right) \tilde{f}_{i / \pi}^{(n)}\left(x_{b}, b_{T}, \mu, \zeta_{b}\right)
\end{array}
$$

Polarized SIDIS

$$
-20-
$$

Frome for angles $\phi h, \phi s$
= Trento convention

- $\vec{q} / / \hat{z}$
- Leptons: $x-z$ plane

Considen $Q \ll M \omega, z$, just γ^{*} Leading Order in $P_{h t} \ll Q$

$$
\text { Structure Functions } \quad F=F\left(x, z h, P_{h r}^{2}, Q^{2}\right)
$$

$$
\frac{\mathrm{d}^{6} \sigma}{\mathrm{~d} x \mathrm{~d} y \mathrm{~d} z_{h} \mathrm{~d} \phi_{S} \mathrm{~d} \phi_{h} \mathrm{~d} P_{h T}^{2}}=\frac{\alpha_{\mathrm{em}}^{2}}{x y Q^{2}}\left(1-y+\frac{1}{2} y^{2}\right)\left[F_{u u, T}+\cos \left(2 \phi_{h}\right) p_{1} F_{u u}^{\cos \left(2 \phi_{h}\right)}\right.
$$

$$
+S_{L} \sin \left(2 \phi_{h}\right) p_{1} F_{u L}^{\sin \left(2 \phi_{h}\right)}+S_{L} \lambda p_{2} F_{L L}
$$

$$
+S_{T} \sin \left(\phi_{h}-\phi_{S}\right) F_{u T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}
$$

$$
+S_{T} \sin \left(\phi_{h}+\phi_{S}\right) p_{1} F_{u T}^{\sin \left(\phi_{h}+\phi_{S}\right)}+\lambda S_{T} \cos \left(\phi_{h}-\phi_{S}\right) p_{2} F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}
$$

$$
\left.+S_{T} \sin \left(3 \phi_{h}-\phi_{S}\right) p_{1} F_{u T}^{\sin \left(3 \phi_{h}-\phi_{s}\right)}\right]
$$

E_{q} (2.186)
Factorization

$$
\begin{aligned}
& \operatorname{Fuu}\left(x, z_{h}, P_{h T}, Q^{2}\right)=\mathcal{B}\left[\tilde{f}_{1}^{(0)} \tilde{D}_{1}^{(0)}\right], \quad \leftarrow u^{\prime} p \text { pl. } 2 \\
& F_{U U}^{\cos 2 \phi_{h}}\left(x, z_{h}, P_{h T}, Q^{2}\right)=M_{N} M_{h} \mathcal{B}\left[\tilde{h}_{1}^{\perp(1)} \tilde{H}_{1}^{\perp(1)}\right], \leftarrow \text { Boer-mulders * Collins } \\
& F_{U L}^{\sin 2 \phi_{h}}\left(x, z_{h}, P_{h T}, Q^{2}\right)=M_{N} M_{h} \mathcal{B}\left[\tilde{h}_{1 L}^{\perp(1)} \tilde{H}_{1}^{\perp(1)}\right], \quad \leftarrow \text { worm-Gear } \# \text { Collins } \\
& F_{L L}\left(x, z_{h}, P_{h T}, Q^{2}\right)=\mathcal{B}\left[\tilde{g}_{1}^{(0)} \tilde{D}_{1}^{(0)}\right], \quad \leftarrow \text { Helicity } * \text { unpol. } \\
& F_{L T}^{\cos \left(\phi_{h}-\phi_{s}\right)}\left(x, z_{h}, P_{h T}, Q^{2}\right)=M_{N} \mathcal{B}\left[\tilde{g}_{1 T}^{\perp(1)} \tilde{D}_{1}^{(0)}\right], \quad \leftarrow \text { Worm-Gear }^{*} * \text { Unpel } \\
& F_{U T}^{\sin \left(\phi_{h}+\phi_{s}\right)}\left(x, z_{h}, P_{h T}, Q^{2}\right)=M_{h} \mathcal{B}\left[\tilde{h}_{1}^{(0)} \tilde{H}_{1}^{\perp(1)}\right], \quad \leftarrow \text { Transuersity } * \text { Collins } \\
& F_{U T}^{\sin \left(\phi_{h}-\phi_{s}\right)}\left(x, z_{h}, P_{h T}, Q^{2}\right)=-M_{N} \mathcal{B}\left[\tilde{f}_{1 T}^{\perp(1)} \tilde{D}_{1}^{(0)}\right], \quad \leftarrow \text { Sivers } \notin \text { Unpol } \\
& F_{u T}^{\sin \left(3 \phi_{h}-\phi_{s}\right)}\left(x, z_{h}, P_{h T}, Q^{2}\right)=\frac{M_{N}^{2} M_{h}}{4} \mathcal{B}\left[\tilde{h}_{1 T}^{\perp(2)} \tilde{H}_{1}^{\perp(1)}\right], \leftarrow \text { Pretzelosity * Collins }
\end{aligned}
$$

$$
\mathcal{B}\left[\tilde{f}^{(m)} \tilde{D}^{(n)}\right] \equiv x \sum_{i} e_{i}^{2} \mathcal{H}_{i i}\left(Q^{2}, \mu\right) \int_{0}^{\infty} \frac{\mathrm{d} b_{T}}{2 \pi} b_{T} b_{T}^{m+n} J_{m+n}\left(q_{T} b_{T}\right) \quad \tilde{f}_{i / \mathrm{N}}^{(m)}\left(x, b_{T}, \mu, \zeta_{1}\right) \tilde{D}_{h / i}^{(n)}\left(z_{h}, b_{T}, \mu, \zeta_{2}\right)
$$

Other Processes: $\quad e^{+} e^{-} \rightarrow h_{1}+h_{2}+x$ see \& 2.11

Implementation
(a) Pert. Orders LO, NLO $\left(\alpha_{s}\right)$, NNLO $\left(\alpha_{s}^{2}\right), \ldots$

$$
\text { in } H_{i j}, C_{i j}
$$

(b) Resumuation

$$
\alpha_{s} \ln \left(\frac{Q}{q_{T}}\right) \sim \alpha_{s} \ln \left(Q b_{T}\right) \sim 1
$$

$$
\begin{aligned}
\widetilde{\sigma}^{W}\left(\boldsymbol{b}_{T}\right)=f_{q}\left(x_{1}\right) f_{\bar{q}}\left(x_{2}\right) C\left[\alpha_{s}\right] \exp & \left\{\frac{\alpha_{s}}{4 \pi}\left(d_{12} L_{b}^{2}+d_{11} L_{b}\right)\right. \\
& +\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left(d_{23} L_{b}^{3}+d_{22} L_{b}^{2}+d_{21} L_{b}\right) \\
& \left.+\left(\frac{\alpha_{s}}{4 \pi}\right)^{3}\left(d_{34} L_{b}^{4}+d_{33} L_{b}^{3}+d_{32} L_{b}^{2}+d_{31} L_{b}\right)\right\}+\ldots
\end{aligned}
$$

Perturbative $\gamma_{\mu}^{q}(\mu, y)$
LL ML NELL N^{3} LL

$$
\text { Pert. + Non-Pert. } \gamma_{y}^{q}(\mu, b \tau)
$$

(c) Combine Pert. \& Non-Pert

$$
\begin{aligned}
& \left(k_{T} \sim b_{T}^{-1} \gg \wedge_{Q C O}\right) \quad\left(k_{T} \sim b_{T}^{-1} \sim \Lambda_{Q} \subset O\right) \quad f_{f i t} \text { to TMD } \\
& f_{i / p}\left(x, b_{T}, \mu, y\right)=\underbrace{f_{i / p}^{\text {pert }}\left(x, b^{*}\left(b_{T}\right), \mu, y\right) \quad f_{i}^{N p^{*}}\left(x, b_{T}\right)} \\
& \begin{aligned}
\sum_{j} \int \frac{d \xi}{z} C_{i j}\left(\frac{x}{q}, b_{T}, \mu, y\right) & f_{j}(\xi, \mu) \\
\text { pert. } & \text { Global fits }
\end{aligned}
\end{aligned}
$$

- $b^{*}\left(b_{T}\right)$ shields pert. from Landau Pole $\alpha_{s}\left(\Lambda_{a, 0}\right)=\infty^{-22-}$
- $f_{i}^{N p *}$'s meaning depends on choice of b^{k}
(d) $Y \operatorname{term}(\operatorname{eg.DY})$

$$
\begin{aligned}
& \frac{d \sigma}{d Q d Y d q_{T}}=\frac{d \sigma^{W}}{d Q d Y d q_{T}}+\frac{d \sigma^{Y}}{d Q d Y d q_{T}} \\
& \begin{array}{l}
4 \\
\text { factorized, }
\end{array} \\
& \hat{T}_{O}\left(\sigma_{T}^{2} / Q^{2}\right)+\cdots \\
& \text { important } \\
& \text { when } q_{T} \sim \mathbb{Q}
\end{aligned}
$$

Pavia19 = Bachetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici (1912.07550)

Common features:

- Unpolarized Data with constraint: $q_{T} / Q<0.2-0.25$ (4-6\% power corrections)
- Perturbative accuracy: N3LL resummation + NNLO matching to PDF
- Neglect small contributions from Boer-Mulders terms (higher twist for pert. b_{T})
- Common b_{T} dependence for all flavors

Global Fits

Common features:

Good Perturbative convergence:

SV19

Pavia19

Global Fits

Differences:

Some differences in solution of evolution equations Datasets used

SV19
Drell-Yan (457 bins) SIDIS (582 bins)

> Pavia19
> Drell-Yan (353 bins)

Global Fits

Differences:

Non-perturbative Models

$$
\begin{aligned}
& \text { SV19 } \\
& \text { TMDPDF: } \\
& \text { TMDFF: } \\
& \text { CS kernel: } 2 \\
& \text { Pavia19 TMDPDF: } \\
& \text { CS kernel: } 2 \\
& f_{\mathrm{NP}}\left(x, b_{T}\right)=\left[\frac{1-\lambda}{1+g_{1}(x) \frac{b_{T}^{2}}{4}}+\lambda \exp \left(-g_{1 B}(x) \frac{b_{T}^{2}}{4}\right)\right] \\
& g_{1}(x)=\frac{N_{1}}{x \sigma} \exp \left[-\frac{1}{2 \sigma^{2}} \ln ^{2}\left(\frac{x}{\alpha}\right)\right] \\
& g_{1 B}(x)=\frac{N_{1 B}}{x \sigma_{B}} \exp \left[-\frac{1}{2 \sigma_{B}^{2}} \ln ^{2}\left(\frac{x}{\alpha_{B}}\right)\right] \\
& \gamma_{\zeta}^{q}(\mu, b)=\gamma_{\zeta}^{q \operatorname{pert}}\left(\mu, b_{*}\right)-\frac{1}{2}\left(g_{2} b_{T}^{2}+g_{2 B} b_{T}^{4}\right) \\
& b_{*}\left(b_{T}\right)=b_{\max }\left(\frac{1-\exp \left(-\frac{b_{T}^{4}}{b_{\text {max }}}\right)}{1-\exp \left(-\frac{b_{T}^{4}}{b_{\text {min }}^{4}}\right)}\right)^{\frac{1}{4}}
\end{aligned}
$$

Note: model form for \mathbf{b}^{*} used to split perturbative \& non-perturbative parts

Global Fits

Fit Results:

SV19

$$
\chi^{2} / N_{p t}=1.06
$$

Pavia19

$$
\chi^{2} / N_{p t}=1.02
$$

Parameter	Value
g_{2}	0.036 ± 0.009
N_{1}	0.625 ± 0.282
α	0.205 ± 0.010
σ	0.370 ± 0.063
λ	0.580 ± 0.092
$N_{1 B}$	0.044 ± 0.012
α_{B}	0.069 ± 0.009
σ_{B}	0.356 ± 0.075
$g_{2 B}$	0.012 ± 0.003

RAD parameters are less sensitive to input PDF set
Universality of RAD satisfied by DY vs. SIDIS data

Fit Results:

Comparison of results for CS Kernel in non-perturbative regime:

Global Fits

Fit Results:
Results for intrinsic TMDPDF (\& TMDFF)

SV19

Pavia19

Quite precise determinations if we assume a given fit form.

Extraction of Sivers function from global fit to SIDIS, DY, and W/Z data [76 bins: HERMES, COMPASS, Jlab (SIDIS); STAR(W/Z); COMPASS (DY)]

$$
f_{1 T}^{\perp \text { SIDIS }}=-f_{1 T}^{\perp} \mathrm{DY}
$$

N3LL analysis following SV19

Flavor dependent parametrization (no matching)

$$
f_{1 T ; q \leftarrow h}^{\perp}(x, b)=N_{q} \frac{(1-x) x^{\beta} q\left(1+\epsilon_{q} x\right)}{n\left(\beta_{q}, \epsilon_{q}\right)} \exp \left(-\frac{r_{0}+x r_{1}}{\sqrt{1+r_{2} x^{2} b^{2}}} b^{2}\right)
$$

Results:

Good global fit: $\quad \chi^{2} / N_{p t}=0.88$
Opposite signs for up and down Sivers functions
Data not precise enough to confirm sign flip

$$
f_{1 T}^{\perp \text { SIDIS }}=+f_{1 T}^{\perp \text { DY }} \text { gives } \quad \chi^{2} / N_{p t}=1.0
$$

