Interesting QFT rigor. ٦

Drell-Yen
$$pp \Rightarrow (p+p^{-}) + X$$
 CM frome P_{A}^{+}, P_{B}^{-} big -2-
A $P_{T}^{+} = P_{T}^{B} = 0$ $S = 2P_{T}^{+}P_{D}^{-}$
 $P_{T}^{+} = P_{T}^{B} = 0$ $S = 2P_{T}^{+}P_{T}^{-}$
 $P_{T}^{+} = P_{T}^{B} = 0$ $S = 2P_{T}^{+}P_{T}^{-}$
 $P_{T}^{+} = P_{T}^{B} = 0$ $S = 2P_{T}^{+}P_{T}^{-}$
 $P_{T}^{+} = P_{T}^{B} = 0$ $S = 2P_{T}^{+}P_{T}^{+}$
 $P_{T}^{+} = P_{T}^{B} = 0$ $S = 2P_{T}^{+}P_{T}^{+}$ $P_{T}^{+} = P_{T}^{-}P_{T}^{+}$
 $P_{T}^{+} = P_{T}^{B} = 0$ $S = 2P_{T}^{+}P_{T}^{+}$ $P_{T}^{+} = P_{T}^{-}P_{T}^{+}$
 $P_{T}^{+} = P_{T}^{B} = 0$ $S = 2P_{T}^{+}P_{T}^{+}$
 $P_{T}^{+} = P_{T}^{-}P_{T}^{+}P_{T}^{+}$
 $P_{T}^{+} = P_{T}^{-}P_{T}^{+}P_{T}^{+}$
 $P_{T}^{+} = P_{T}^{-}P_{T}^{+}P_{T}^{+}$
 $P_{T}^{+} = 2P_{T}^{+}P_{T}^{+}P_{T}^{+}$
 $P_{T}^{+} = 2P_{T}^{+}P_{$

Hadron - Hadron Frame: $\mathbf{P}_{\tau} = \mathbf{0}$, $\mathbf{P}_{h\tau} = \mathbf{0}$: $\mathbf{g}_{\tau} = \mathbf{P}_{\tau}' - \mathbf{k}_{\tau}$ Photon - Hadron Frame: $\mathbf{P}_{\tau} = \mathbf{0}$, $\mathbf{g}_{\tau} = \mathbf{0}$: $\left(-\frac{\mathbf{P}_{h\tau}}{\mathbf{z}_{h}} = -\frac{\mathbf{P}_{\tau}}{\mathbf{z}_{h}} - \mathbf{k}_{\tau}\right)$ $\mathbf{p}_{h\tau} = \mathbf{P}_{\tau} + \mathbf{z}_{h}\mathbf{k}_{\tau}$ $\mathbf{P}_{h\tau} = \mathbf{P}_{\tau} + \mathbf{z}_{h}\mathbf{k}_{\tau}$ $\mathbf{P}_{h\sigma}$ $\mathbf{P}_{h\sigma}$ $\mathbf{P}_{h\sigma}$ $\mathbf{P}_{h\sigma}$ $\mathbf{P}_{h\sigma}$ $\mathbf{P}_{h\sigma}$

do ~ $\int d^2 k_T d^2 P_T$ filp (x, k_T) $D_{i/h}(z_h, P_T) S^2(P_{hT} - z_h k_T - P_T)$ fragmentation of goork i to hadron h with momentum fraction $Z_h \notin trans.$ momentum P_T relative to gradk [Hand book pg. 57-58]

"Peal the onion"
Use DY for simplicity
() Factorization Observables
$$\Leftrightarrow$$
 TMOs
() Galineer Factorization $\int d^2x_T = Q^2 \gg \Lambda_{aco}^2$
() Galineer Factorization $\int d^2x_T = Q^2 \gg \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \gg \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \gg \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \gg \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \gg \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \gg \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \gg \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \gg \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \gg \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \gg \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \gg \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \gg \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \gg \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \gg \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \gg \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \gg \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \gg \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \gg \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \gg \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \gg \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \gg \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \gg \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \gg \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \gg \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \gg \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \gg \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \propto \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \propto \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \propto \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \propto \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \propto \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \propto \Lambda_{aco}^2$
() Collineer Factorization $\int d^2x_T = Q^2 \propto \Lambda_{aco}^2$
() Collineer Factorization \int

Even with arbitrary gluent quark radiation!

$$\frac{1}{16} = W[T] = Wilson Line = P \exp \left[-i3 \int_{T} dx^{\mu} A_{\mu}^{c}(x) t^{c}\right]$$

$$\frac{7}{16} = path.$$

$$\frac{1}{16} = path.$$

$$\frac{1}{16} = \frac{1}{16} = \frac{1}{1$$

prob. of finding porton i with momentum fraction & inside proton

 \bigcirc $Q_T^2 \sim Q^2$

$$\frac{d\sigma}{da^2 dy ds_{\tau}^2} = \int ds_a ds_b f_{i/p}(s_a, \mu) f_{j/p}(s_{v, \mu}) \frac{d\hat{\sigma}_{ij}(s_{a,v, \mu})}{da^2 dy ds_{\tau}^2} \left\{ 1 + O\left(\frac{\Lambda_{aco}}{s_{\tau}^2, a^2}\right) \right\}$$

(c)
$$g_{\tau}^{+} \ll Q^{\perp} \left[\frac{2}{2} \frac{2}{2} e^{-k_{0}} \right] TMO_{5}$$

 $g_{\tau}^{+} \gg \Lambda_{aco}^{+} \frac{4}{2} e^{-k_{0}} \int d^{k}k_{\tau} filp(x_{a}, k_{\tau}, p_{r}, p_{r}) + f_{\tau}(p(x_{a}, \frac{2}{2}, -k_{\tau}, p_{r}, p_{r})) + \frac{2}{2} \int d^{k}k_{\tau} filp(x_{a}, k_{\tau}, p_{r}, p_{r}) + \frac{2}{2} \int d^{k}k_{\tau} filp(x_{a}, k_{\tau}, p_{r}) + \frac{2}{2} \int d$

Layer
(2) TMO Factorization Thm II: ropidity scoles
• What type of rodiation is allowed ? in frared

$$t - 1$$
 $2p+p=\overline{f_r}^{+}$
collinear $w(Q, \frac{Q_r}{Q}, Q_r)$ $q(Q)$ collimated
soft $w(Q_r, Q_r, Q_r)$ $q(Q)$ collimated
distinguish ? by ropidity $v = \text{ropidity cutoff}^{"}$
Yullinear $r = \frac{1}{2} \ln\left(\frac{Q_r}{Q_r}\right) >> Y_{soft} = \frac{1}{2} \ln(1)$
think ? $g_T e^{2Y} \ge 0$ $v \ge q_T e^{2Y}$

• Traditional QCD Fact, approx for graphs in different mem. regions SCET = fields for diff. mem. regions with expanded Z.

$$\frac{d\sigma}{da \, dY \, d^2 \varrho_T} = H_{i\tau} \left(a_{,\mu}^{\nu} \right) \int d^2 b_T e^{i \frac{2}{\vartheta_T \cdot \vartheta_T}} \widetilde{B}_{i/\rho} \left(x_a, \vartheta_T, \mu, \frac{y_a}{v^2} \right) B_{\tau/\rho} \left(x_b, \vartheta_T, \mu, \frac{y_b}{v^2} \right) \\
= H_{i\tau} \left(a_{,\mu}^{\nu} \right) \int d^2 b_T e^{i \frac{2}{\vartheta_T \cdot \vartheta_T}} \widetilde{F}_{i/\rho} \left(x_{e_1} \vartheta_T, \mu, y_a \right) f_{\tau/\rho} \left(x_{b_1} \vartheta_T, \mu, y_b \right)$$

•
$$\tilde{f} \equiv \tilde{B} \int \tilde{S}$$
 indep. of O

• Collins - Soper Scales

$$J_a \simeq 2 (X_a P_a^{\dagger})^2 e^{-2Y_a}$$
 freedom in
 $how we split J_a Y_b = Q^4$
 $J_b \simeq 2 (X_b P_b^{-2})^2 e^{\pm 2Y_a}$ soft fr.
(ignore)

-6-

• Encode initial state interactions gauge involves
$$-3-$$

operator
• reduces to bore collinear PDF for $b_{T} \rightarrow 0$ (not true for
 $soft F_{D}$
 $S(b_{T}, e, T) = \prod_{N_{c}} \langle o| [T_{T} | W_{p}(b_{T})]_{T} | o \rangle$
• 2 staples posted
 $byether \Leftrightarrow soft$
 $approx to fields$
 $for both protons$
• closed loop, 6 sides
 $(gauge inv.)$
• $\overline{S}(b_{T} \rightarrow 0, e, \tau) = 1$
Subtraction
 $\overline{Subtraction}$
 $\overline{Subtraction}$
 $\overline{Subt} = \overline{S}$ depends on cloice for T
• remove infrared double countring blue $\overline{S}^{(u)}$ and $\overline{S}^{(u)}$
• nong choices possible for T
 $(Sec. 2.4 of Handbook)$
 $Common : Subt = 1$ possible

$$\begin{split} & n - neg \qquad R_{c} = \omega^{2} \left[\frac{\sqrt{2}k^{4}}{s} \right]^{-T} = \omega^{2} \left(\frac{(1-x)}{s} \frac{t^{4}}{s} \right)^{-T} \qquad -11 - \frac{1}{2} \\ & = \frac{1}{2} \left[\frac{1-x}{s} \right]^{-1+T} = -\frac{1}{2} \left[\frac{1-x}{s} \right]^{-1} + \frac{1-x}{s} +$$

$$\widetilde{S}_{q} = \left[+ \frac{d_{s}(\mu)C_{F}}{2\pi} \right] \left[\frac{2}{e_{uv}^{2}} + 2\left(\frac{1}{e_{uv}} + L_{b} \right) \left(-\frac{\lambda}{\tau} + \ln \frac{\mu^{2}}{J^{2}} \right) - L_{b}^{2} - \frac{\pi^{2}}{G} \right] + G(\tau) + G(\epsilon)$$

$$\begin{aligned} \mathcal{Z}_{uv}^{\theta} &= 1 - \frac{\sqrt{s(\mu)}(\mu)}{2\pi} \left[\frac{1}{e_{uv}^{2}} + \frac{1}{e_{uv}} \left(\frac{3}{2} + \frac{1}{2} \ln \frac{\mu^{2}}{5} \right) \right] &-12 - \frac{12}{2\pi} \left[\frac{1}{e_{uv}^{2}} + \frac{1}{e_{uv}} \left(\frac{3}{2} + \frac{1}{2} \ln \frac{\mu^{2}}{5} \right) \right] \\ \tilde{f}\left(\times, b\tau, \mu, Y \right) &= \mathcal{Z}_{uv} \quad \tilde{f}_{g/g} \quad \int \tilde{S}^{\tau} \\ &= \delta\left(1 - \chi \right) + \frac{\sqrt{s(\mu)}(\mu)}{2\pi} \left[- \left(\frac{1}{e_{xR}} + L_{b} \right) \left[P_{gg}(\chi) \right]_{+} \\ &+ (1 - \chi) + \delta\left(1 - \chi \right) \left\{ - \frac{L_{b}^{2}}{2} + L_{b} \left(\frac{3}{2} + \frac{1}{2} \ln \frac{\mu^{2}}{5} \right) - \frac{\pi^{2}}{12} \right\} \right] \end{aligned}$$

- · expected IR div.
- 1 's cancel, In 2° cancel

Renormalization Group Evolution Consider anomalous dimensions in ds expansion $\mu \frac{d}{d\mu} \widehat{f}_{i/\mu}(x,br_{i}\mu, \forall) = (\mu \frac{d}{d\mu} \frac{2}{v}v) \widehat{f}^{bore} \int \frac{1}{s^{bore}} \int \frac{1}{s^{bore}} \frac{1}{s^{bore}$

• repidity
$$RGE = Cellins - Soper Egtn$$

 $J \stackrel{d}{=} ln \stackrel{d}{=} i/p (x, b_T, \mu, y) = \frac{1}{2} \mathcal{J}_y^2 (\mu, b_T) \overset{d}{=} Known to 4-loops$
 $\frac{1-loop}{-\frac{d}{2\pi}} - \frac{d_s(\mu)CF}{2\pi} Lb = -\frac{d_s(\mu)CF}{2\pi} ln \frac{\mu}{b} \frac{h}{b}$
 $evolve from JJ = 1 GeV \rightarrow JJ = Q$

all orders
form
$$\gamma_{y}^{2}(\mu,br) = -2 \int_{b_{T}}^{\mu} \frac{d\mu'}{\mu'} \left[\cos \left[u_{s}(\mu') \right] + \gamma_{y}^{2} \left[d_{s}(\gamma_{b_{T}}) \right]$$

Note: Jy (mibr) is non-perturbative for br ~ laco

Resummation
$$d_{s} \mathcal{L}_{n} \left(\frac{\omega}{2s_{r}}\right) \sim d_{s} \mathcal{L}_{n} \left(Q b_{r}\right) \sim 1$$

$$\widetilde{\sigma}^{W}(b_{T}) = f_{q}(x_{1})f_{\bar{q}}(x_{2})C[\alpha_{s}]\exp\left\{\frac{\alpha_{s}}{4\pi}\left(d_{12}L_{b}^{2} + d_{11}L_{b}\right) + \left(\frac{\alpha_{s}}{4\pi}\right)^{2}\left(d_{23}L_{b}^{3} + d_{22}L_{b}^{2} + d_{21}L_{b}\right) + \left(\frac{\alpha_{s}}{4\pi}\right)^{3}\left(d_{34}L_{b}^{4} + d_{33}L_{b}^{3} + d_{32}L_{b}^{2} + d_{31}L_{b}\right)\right\} + \dots,$$

$$LL \quad NLL \quad NNLL \quad N^{3}LL$$

fragmentation fr. Divis = lin lin Zus (MiJ, e) Divis bare JS bare some as PPF

-15-

Spin Polarized TMDs
• Consider polarized protons & guarks
• Have 3 TMD POFs at leading order in
$$& T \ll Q$$

Consider
 $Tax = \int dt^{-} dt^{+} e^{-tr} e^{tr} + r < P(e,s) |[f^{+}(s) & U_{L} + r' < (s)]_{+} P(t,s) > r
Tax = \int dt^{-} dt^{+} e^{-tr} e^{tr} + r' < P(e,s) |[f^{+}(s) & U_{L} + r' < (s)]_{+} P(t,s) > r
Tax = \int dt^{-} dt^{+} e^{-tr} e^{tr} + r' < P(e,s) |[f^{+}(s) & U_{L} + r' < (s)]_{+} P(t,s) > r
Tax = \int dt^{-} dt^{+} e^{-tr} e^{tr} + r' < P(e,s) |[f^{+}(s) & U_{L} + r' < (s)]_{+} P(t,s) > r
Spin vector St Sr = S (P^{-n} - P^{+}nt) + Sr
Iongituid the transverse
spin vector St Sr = S (P^{-n} - P^{+}nt) + Sr
Iongituid the transverse
 $Spin vector St = Sr + Sr = \begin{cases} 1 \text{ power state} \\ 2(1 \text{ mixed state} \end{cases}$
 $T = Sr + Sr = \begin{cases} 1 \text{ power state} \\ 2(1 \text{ mixed state} \end{cases}$
 $T = resurce St = Sr + Sr = \begin{cases} 1 \text{ power state} \\ 2(1 \text{ mixed state} \end{cases}$
 $T = resurce St = resurce S$$

Leading Quark TMDPDFs → Nucleon Spin → Quark Spin				
		Quark Polarization		
		Un-Polarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
Nucleon Polarization	U	$f_1 = \underbrace{\bullet}_{\text{Unpolarized}}$		$h_1^\perp = \underbrace{\uparrow}_{\text{Boer-Mulders}} - \underbrace{\downarrow}_{\text{Boer-Mulders}}$
	L		$g_1 = \underbrace{\bullet \bullet}_{\text{Helicity}} - \underbrace{\bullet \bullet}_{\text{Helicity}}$	$h_{1L}^{\perp} = \underbrace{\checkmark}_{\text{Worm-gear}} - \underbrace{\checkmark}_{\text{Worm-gear}}$
	Т	$f_{1T}^{\perp} = \underbrace{\bullet}_{\text{Sivers}}^{\bullet} - \underbrace{\bullet}_{\bullet}$	$g_{1T}^{\perp} = \underbrace{\stackrel{\dagger}{\bullet \bullet}}_{\text{Worm-gear}} - \underbrace{\stackrel{\dagger}{\bullet \bullet}}_{\text{Worm-gear}}$	$h_{1} = \underbrace{\stackrel{\uparrow}{\blacktriangleright} - \stackrel{\uparrow}{\uparrow}}_{\text{Transversity}} \\ h_{1T}^{\perp} = \underbrace{\stackrel{\uparrow}{\checkmark} - \underbrace{\stackrel{\uparrow}{\checkmark}}_{\text{Pretzelosity}} \\ h_{1T}^{\perp} = \underbrace{\stackrel{\uparrow}{\checkmark} - \underbrace{\stackrel{\uparrow}{\checkmark}_{\text{Pretzelosity}} \\ h_{1T}^{\perp} = \underbrace{\stackrel{\uparrow}{\checkmark} - \underbrace{\stackrel{\uparrow}{\frown}_{\text{Pretzelosity}} \\ h_{1T}^{\perp} = \underbrace{\stackrel{\downarrow}{\frown}_{\text{Pretzelosity}} \\ h_{1T}^{\perp} = \underbrace{\stackrel{\downarrow}{\frown}_{\text{Pretzelosity} \\ h_{1T}^{\perp}$

-)7-

 $C_{ostracting} f_{i/ps}^{[r]} = \Gamma_{xx'} f_{xx'} we con write$ $f_{i/ps}^{[\gamma^{+}]}(x, \mathbf{k}_{T}, \mu, \zeta) = f_{1}(x, k_{T}) - \frac{\epsilon_{T}^{\rho\sigma} k_{T\rho} S_{T\sigma}}{M} \kappa f_{1T}^{\perp}(x, k_{T}),$ $f_{i/ps}^{[\gamma^{+}\gamma_{5}]}(x, \mathbf{k}_{T}, \mu, \zeta) = S_{L} g_{1}(x, k_{T}) - \frac{k_{T} \cdot S_{T}}{M} g_{1T}^{\perp}(x, k_{T}),$ $f_{i/ps}^{[i\sigma^{a+}\gamma_{5}]}(x, \mathbf{k}_{T}, \mu, \zeta) = S_{T} h_{1}(x, k_{T}) + \frac{S_{L} k_{T}^{\alpha}}{M} h_{1L}^{\perp}(x, k_{T})$ $- \frac{\mathbf{k}_{T}^{2}}{M^{2}} \left(\frac{1}{2} g_{T}^{\alpha\rho} + \frac{k_{T}^{\alpha} k_{T}^{\rho}}{\mathbf{k}_{T}^{2}}\right) S_{T\rho} h_{1T}^{\perp}(x, k_{T}) - \frac{\epsilon_{T}^{\alpha\rho} k_{T\rho}}{M} \kappa h_{1}^{\perp}(x, k_{T})$

Under T = T-reversal $S^{\mu} \Rightarrow -S^{\mu}$. Consider T^{ρ} where P = Pority: • naively f_{1T}^{+} , h_{1}^{+} odd , rest even • but also switches Wilson lines $W_{-} \Leftrightarrow W_{-}$ • $(f_{1T}^{+})^{S \mid DTS} = -(f_{1T}^{+})^{OY}$ Formous SIDIS sign-flip $(h_{1}^{+})^{S \mid DTS} = -(h_{1}^{+})^{OY}$ Encoded above by: K = +1 OYothers TMOs + sign $\cdot o$ equal

For Later Use, the Fourier transform
$$-18$$

 $\tilde{f}_{i/ps}^{[\gamma^+]}(x, \mathbf{b}_T, \mu, \zeta) = \tilde{f}_1(x, b_T) + i\epsilon_{\rho\sigma} b_T^{\rho} S_T^{\sigma} M \tilde{f}_{1T}^{\perp}(x, b_T),$
 $\tilde{f}_{i/ps}^{[\gamma^+\gamma_5]}(x, \mathbf{b}_T, \mu, \zeta) = S_L \tilde{g}_1(x, b_T) + ib_T \cdot S_T M \tilde{g}_{1T}^{\perp}(x, b_T),$
 $\tilde{f}_{i/ps}^{[i\sigma^{a+}\gamma_5]}(x, \mathbf{b}_T, \mu, \zeta) = S_T^{\alpha} \tilde{h}_1(x, b_T) - iS_L b_T^{\alpha} M \tilde{h}_{1L}^{\perp}(x, b_T) + i\epsilon^{\alpha\rho} b_{\perp\rho} M \tilde{h}_1^{\perp}(x, b_T)$
 $+ \frac{1}{2} \mathbf{b}_T^2 M^2 \left(\frac{1}{2} g_T^{\alpha\rho} + \frac{b_T^{\alpha} b_T^{\rho}}{\mathbf{b}_T^2}\right) S_{\perp \rho} \tilde{h}_{1T}^{\perp}(x, b_T).$

The ky profactors complicate the Fourier transform:

$$\begin{split} \tilde{f}_{1}(x,b_{T}) &\equiv \tilde{f}_{1}^{(0)}(x,b_{T}), \qquad \tilde{f}_{1T}^{\perp}(x,b_{T}) \equiv \tilde{f}_{1T}^{\perp(1)}(x,b_{T}), \qquad \tilde{h}_{1T}^{\perp}(x,b_{T}) \equiv \tilde{h}_{1T}^{\perp(2)}(x,b_{T}) \\ \tilde{g}_{1L}(x,b_{T}) &\equiv \tilde{g}_{1L}^{(0)}(x,b_{T}), \qquad \tilde{h}_{1}^{\perp}(x,b_{T}) \equiv \tilde{h}_{1}^{\perp(1)}(x,b_{T}), \\ \tilde{h}_{1}(x,b_{T}) &\equiv \tilde{h}_{1}^{(0)}(x,b_{T}) \qquad \tilde{g}_{1T}(x,b_{T}) \equiv \tilde{g}_{1T}^{(1)}(x,b_{T}), \\ \tilde{h}_{1L}^{\perp}(x,b_{T}) &\equiv \tilde{h}_{1L}^{\perp(1)}(x,b_{T}). \end{split}$$

$$\tilde{f}^{(n)}(x, b_T, \mu, \zeta) \equiv n! \left(\frac{-1}{M^2 b_T} \partial_{b_T}\right)^n \tilde{f}(x, b_T, \mu, \zeta)$$

$$= \frac{2\pi n!}{(b_T M)^n} \int_0^\infty dk_T k_T \left(\frac{k_T}{M}\right)^n J_n(b_T k_T) f(x, k_T, \mu, \zeta)$$

$$\mathcal{F}_{Bessel Fn. order n} from \int_0^{\infty} d\varphi$$
Similar Spin decomposition can be done for
$$\mathcal{O}_{Ourch} TMO FFs \qquad see \quad \S 2.7 \text{ of }$$

$$\mathcal{O}_{Ourch} TMO POFs \notin FFs \qquad \text{Handbook}$$

We'll need:

А

Leading Quark TMDFFs			
	Quark Polarization		
	Un-Polarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
Unpolarized (or Spin 0) Hadrons	$D_1 = \bullet$ Unpolarized		$H_1^{\perp} = \underbrace{}_{\text{Collins}} - \underbrace{}_{\text{Collins}}$

Complete TMO Factorization § 2.11 Handbook
$$-19-$$

 g^{μ}
Polonized Drell-Yam $\pi(P_{T}) + p(P_{P_{T}}S) \Rightarrow 3^{\mu}/2 \Rightarrow 2^{\mu}Z^{-} \times$
Angles $\Theta, \Theta, \Theta, \Theta$ defined in
Collins-Soper frame
 $(x^{+}x^{-})$ at rest
 $P_{\pi\tau} = P_{P\tau} = \frac{q_{\tau}}{2}$
Leading for $q_{\tau} \ll Q$
 $\frac{d\sigma}{d^{4}qd\Omega} = \frac{a_{em}^{2}}{\mathcal{F}Q^{2}} \left\{ \left[(1 + \cos^{2}\theta) F_{UL}^{1} + \sin^{2}\theta \cos(2\phi) F_{UL}^{\cos 2\phi} \right] + S_{L} \sin^{2}\theta \sin(2\phi) F_{UL}^{\sin 2\phi} + \sin(2\phi - \phi_{S}) F_{UL}^{\sin(2\phi - \phi_{S})} \right] \right\}$
Factorizentian

Factorization

$$\begin{split} F_{UU}^{1} &= \mathcal{B}\left[\tilde{f}_{1,\pi}^{(0)} \, \tilde{f}_{1,p}^{(0)}\right], & \leftarrow \text{Unpol}^{2} \\ F_{UU}^{\cos 2\phi} &= M_{\pi}M_{p} \, \mathcal{B}\left[\tilde{h}_{1,\pi}^{\perp(1)} \, \tilde{h}_{1,p}^{\perp(1)}\right], & \leftarrow \text{Boer-Mulders}^{2} \\ F_{UL}^{\sin 2\phi} &= -M_{\pi}M_{p} \, \mathcal{B}\left[\tilde{h}_{1,\pi}^{\perp(1)} \, \tilde{h}_{1L,p}^{\perp(1)}\right], & \leftarrow \text{In in d Worm-Gean} \\ F_{UT}^{\sin \phi_{S}} &= M_{p} \, \mathcal{B}\left[\tilde{f}_{1,\pi}^{(0)} \, \tilde{f}_{1T,p}^{\perp(1)}\right], & \leftarrow \text{Unpol}^{2} \, \mathcal{A} \quad \text{Sivers} \\ F_{UT}^{\sin(2\phi-\phi_{S})} &= -M_{\pi} \, \mathcal{B}\left[\tilde{h}_{1,\pi}^{\perp(1)} \, \tilde{h}_{1,p}^{(0)}\right], & \leftarrow \text{Boer-Mulders & Transversity} \\ F_{UT}^{\sin(2\phi+\phi_{S})} &= -\frac{M_{\pi}M_{p}^{2}}{4} \, \mathcal{B}\left[\tilde{h}_{1,\pi}^{\perp(1)} \, \tilde{h}_{1T,p}^{\perp(2)}\right]. & \leftarrow \text{Boer-Mulders & Pretzelosity} \end{split}$$

$$\mathcal{B}[\tilde{f}_{\pi}^{(m)} \ \tilde{f}_{p}^{(n)}] \equiv \sum_{i} H_{i\bar{i}}(Q,\mu) \int_{0}^{\infty} \frac{db_{T}}{2\pi} b_{T} b_{T}^{m+n} J_{m+n}(q_{T}b_{T}) \tilde{f}_{i/p}^{(m)}(x_{a},b_{T},\mu,\zeta_{a}) \tilde{f}_{\bar{i}/\pi}^{(n)}(x_{b},b_{T},\mu,\zeta_{b})$$

$$\mathcal{B}[\tilde{f}^{(m)} \tilde{D}^{(n)}] \equiv x \sum_{i} e_{i}^{2} \mathcal{H}_{ii}(Q^{2},\mu) \int_{0}^{\infty} \frac{\mathrm{d}b_{T}}{2\pi} b_{T} b_{T}^{m+n} J_{m+n}(q_{T}b_{T}) \quad \tilde{f}_{i/N}^{(m)}(x,b_{T},\mu,\zeta_{1}) \tilde{D}_{h/i}^{(n)}(z_{h},b_{T},\mu,\zeta_{2}).$$

Other Processes: ete- > hi +hz + X see & Z.11

$$\begin{aligned} \text{Implementation} \\ \textcircled{O} \quad \text{Pert: Orders } & \text{LO}, \quad \text{NLO}(4s), \quad \text{NNLO}(4s^2), \\ & \text{in } H; \texttt{j}, \quad \texttt{Cis} \end{aligned}$$

$$\textcircled{O} \quad \text{Resummation} \quad \text{as } \mathcal{I}_n\left(\frac{\mathfrak{B}}{\mathfrak{E}_{\mathsf{T}}}\right) \sim \text{as } \mathcal{I}_n\left(\mathfrak{B}\mathfrak{b}\mathfrak{r}\right) \sim 1 \end{aligned}$$

$$\overbrace{\sigma}^{W}(\mathfrak{b}_T) = f_q(\mathfrak{x}_1)f_{\bar{q}}(\mathfrak{x}_2)C[\alpha_s]\exp\left\{\frac{\alpha_s}{4\pi}\left(d_{12}L_b^2 + d_{11}L_b\right) + \left(\frac{\alpha_s}{4\pi}\right)^2\left(d_{23}L_b^3 + d_{22}L_b^2 + d_{21}L_b\right) + \left(\frac{\alpha_s}{4\pi}\right)^3\left(d_{34}L_b^4 + d_{33}L_b^3 + d_{32}L_b^2 + d_{31}L_b\right)\right\} + \dots, \end{aligned}$$

$$\texttt{Perturbative } \mathcal{T}_{\mu}^{\mathfrak{B}}(\mu, \mathfrak{I}) \qquad \texttt{LL} \quad \texttt{NLL} \quad \texttt{NNLL} \quad \texttt{N}^{3}\texttt{LL} \end{aligned}$$

Pavia19 = Bachetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici (1912.07550)

Common features:

- Unpolarized Data with constraint: $q_T/Q < 0.2 0.25$ (4-6% power corrections)
- Perturbative accuracy: N3LL resummation + NNLO matching to PDF
- Neglect small contributions from Boer-Mulders terms (higher twist for pert. b_T)
- Common b_T dependence for all flavors

Common features:

Good Perturbative convergence:

- 24 -

Differences:

Some differences in solution of evolution equations

Datasets used

SV19

Drell-Yan (457 bins) SIDIS (582 bins)

Pavia19 Drell-Yan (353 bins)

$$x_1 = Qe^y / \sqrt{s}, \quad x_2 = Qe^{-y} / \sqrt{s}$$

Differences:

Non-perturbative Models

TMDPDF: 5 **TMDPDF:** 7 Pavia19 **SV19** TMDFF: 4 CS kernel: 2 CS kernel: 2 $f_{\rm NP}(x, b_T) = \left| \frac{1 - \lambda}{1 + q_1(x) \frac{b_T^2}{4}} + \lambda \exp\left(-g_{1B}(x) \frac{b_T^2}{4}\right) \right|$ $f_{NP}(x,b) = \exp\left(-\frac{\lambda_1(1-x) + \lambda_2 x + x(1-x)\lambda_5}{\sqrt{1+\lambda_2 x^{\lambda_4} b^2}} b^2\right)$ $g_1(x) = \frac{N_1}{x\sigma} \exp\left[-\frac{1}{2\sigma^2} \ln^2\left(\frac{x}{\sigma}\right)\right]$ $D_{NP}(x,b) = \exp\left(-\frac{\eta_1 z + \eta_2(1-z)}{\sqrt{1+\eta_2(b/z)^2}}\frac{b^2}{z^2}\right)\left(1+\eta_4\frac{b^2}{z^2}\right)$ $g_{1B}(x) = \frac{N_{1B}}{r\sigma_B} \exp\left[-\frac{1}{2\sigma^2} \ln^2\left(\frac{x}{\sigma_B}\right)\right]$ $\gamma_{\zeta}^{q}(\mu, b) = \gamma_{\zeta}^{q \text{ pert}}(\mu, b_{*}) - \frac{1}{2}(g_{2}b_{T}^{2} + g_{2B}b_{T}^{4})$ $\gamma^q_{\mathcal{L}}(\mu, b) = \gamma^q_{\mathcal{L}}^{\text{pert}}(\mu, b^*) - \frac{1}{2} c_0 b b^*$ $b_*(b_T) = b_{\max} \left(\frac{1 - \exp\left(-\frac{b_T^*}{b_{\max}^4}\right)}{1 - \exp\left(-\frac{b_T^4}{1 - \exp\left(-\frac{b_T^4}{1$ $b^*(b) = \frac{b}{\sqrt{1 + b^2/B_{\text{res}}^2}}$

Note: model form for b* used to split perturbative & non-perturbative parts

Fit Results:

S	V	٦	9	

$$\chi^2/N_{pt} = 1.06$$

Pavia19

 $\chi^2/N_{pt} = 1.02$

NP-parameters			
RAD	$B_{\rm NP} = 1.93 \pm 0.22$	$c_0 = (4.27 \pm 1.05) \times 10^{-2}$	
TMDDDE	$\lambda_1 = 0.224 \pm 0.029$	$\lambda_2 = 9.24 \pm 0.46$	$\lambda_3 = 375. \pm 89.$
	$\lambda_4 = 2.15 \pm 0.19$	$\lambda_5 = -4.97 \pm 1.37$	
TMDEE	$\eta_1 = 0.233 \pm 0.018$	$\eta_2 = 0.479 \pm 0.025$	
	$\eta_3 = 0.472 \pm 0.041$	$\eta_4 = 0.511 \pm 0.040$	

Low and High energy data are well described RAD parameters are less sensitive to input PDF set Universality of RAD satisfied by DY vs. SIDIS data

Parameter	Value
g ₂	0.036 ± 0.009
N_1	0.625 ± 0.282
α	0.205 ± 0.010
σ	0.370 ± 0.063
λ	0.580 ± 0.092
N_{1B}	0.044 ± 0.012
α_B	0.069 ± 0.009
σ_B	0.356 ± 0.075
<i>8</i> 2 <i>B</i>	0.012 ± 0.003

Fit Results:

Comparison of results for CS Kernel in non-perturbative regime:

Fit Results: Results for intrinsic TMDPDF (& TMDFF)

Quite precise determinations if we assume a given fit form.

Extraction of Sivers function from global fit to SIDIS, DY, and W/Z data [76 bins: HERMES, COMPASS, Jlab (SIDIS); STAR(W/Z); COMPASS (DY)]

 $f_{1T}^{\perp \text{ SIDIS}} = -f_{1T}^{\perp \text{ DY}}$

N3LL analysis following SV19

Flavor dependent parametrization (no matching)

$$f_{1T;q \leftarrow h}^{\perp}(x,b) = N_q \frac{(1-x)x^{\beta_q}(1+\epsilon_q x)}{n(\beta_q,\epsilon_q)} \exp\left(-\frac{r_0 + xr_1}{\sqrt{1+r_2}x^2b^2}b^2\right)$$

Results:

Good global fit: $\chi^2/N_{pt} = 0.88$

Opposite signs for up and down Sivers functions

Data not precise enough to confirm sign flip

$$f_{1T}^{\perp \text{ SIDIS}} = + f_{1T}^{\perp \text{ DY}}$$
 gives $\chi^2/N_{pt} = 1.0$

-31-