

Pavia19 = Bachetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici (1912.07550)

Common features:

- Unpolarized Data with constraint: $q_T/Q < 0.2 0.25$ (4-6% power corrections)
- Perturbative accuracy: N3LL resummation + NNLO matching to PDF
- Neglect small contributions from Boer-Mulders terms (higher twist for pert. b_T)
- Common b_T dependence for all flavors

Common features:

Good Perturbative convergence:

- 24 -

Differences:

Some differences in solution of evolution equations

Datasets used

SV19

Drell-Yan (457 bins) SIDIS (582 bins)

Pavia19 Drell-Yan (353 bins)

$$x_1 = Qe^y / \sqrt{s}, \quad x_2 = Qe^{-y} / \sqrt{s}$$

Differences:

Non-perturbative Models

TMDPDF: 5 **TMDPDF:** 7 Pavia19 **SV19** TMDFF: 4 CS kernel: 2 CS kernel: 2 $f_{\rm NP}(x, b_T) = \left| \frac{1 - \lambda}{1 + q_1(x) \frac{b_T^2}{4}} + \lambda \exp\left(-g_{1B}(x) \frac{b_T^2}{4}\right) \right|$ $f_{NP}(x,b) = \exp\left(-\frac{\lambda_1(1-x) + \lambda_2 x + x(1-x)\lambda_5}{\sqrt{1+\lambda_2 x^{\lambda_4} b^2}} b^2\right)$ $g_1(x) = \frac{N_1}{x\sigma} \exp\left[-\frac{1}{2\sigma^2} \ln^2\left(\frac{x}{\sigma}\right)\right]$ $D_{NP}(x,b) = \exp\left(-\frac{\eta_1 z + \eta_2(1-z)}{\sqrt{1+\eta_2(b/z)^2}}\frac{b^2}{z^2}\right)\left(1+\eta_4\frac{b^2}{z^2}\right)$ $g_{1B}(x) = \frac{N_{1B}}{r\sigma_B} \exp\left[-\frac{1}{2\sigma^2} \ln^2\left(\frac{x}{\sigma_B}\right)\right]$ $\gamma_{\zeta}^{q}(\mu, b) = \gamma_{\zeta}^{q \text{ pert}}(\mu, b_{*}) - \frac{1}{2}(g_{2}b_{T}^{2} + g_{2B}b_{T}^{4})$ $\gamma^q_{\mathcal{L}}(\mu, b) = \gamma^q_{\mathcal{L}}^{\text{pert}}(\mu, b^*) - \frac{1}{2} c_0 b b^*$ $b_*(b_T) = b_{\max} \left(\frac{1 - \exp\left(-\frac{b_T^*}{b_{\max}^4}\right)}{1 - \exp\left(-\frac{b_T^4}{1 - \exp\left(-\frac{b_T^4}{1$ $b^*(b) = \frac{b}{\sqrt{1 + b^2/B_{\text{res}}^2}}$

Note: model form for b* used to split perturbative & non-perturbative parts

Fit Results:

S	V	٦	9	

$$\chi^2/N_{pt} = 1.06$$

Pavia19

 $\chi^2/N_{pt} = 1.02$

NP-parameters				
RAD	$B_{\rm NP} = 1.93 \pm 0.22$	$c_0 = (4.27 \pm 1.05) \times 10^{-2}$		
TMDPDF	$\lambda_1 = 0.224 \pm 0.029$	$\lambda_2 = 9.24 \pm 0.46$	$\lambda_3 = 375. \pm 89.$	
	$\lambda_4 = 2.15 \pm 0.19$	$\lambda_5 = -4.97 \pm 1.37$		
TMDFF	$\eta_1 = 0.233 \pm 0.018$	$\eta_2 = 0.479 \pm 0.025$		
	$\eta_3 = 0.472 \pm 0.041$	$\eta_4 = 0.511 \pm 0.040$		

Low and High energy data are well described RAD parameters are less sensitive to input PDF set Universality of RAD satisfied by DY vs. SIDIS data

Parameter	Value	
g ₂	0.036 ± 0.009	
N_1	0.625 ± 0.282	
α	0.205 ± 0.010	
σ	0.370 ± 0.063	
λ	0.580 ± 0.092	
N_{1B}	0.044 ± 0.012	
α_B	0.069 ± 0.009	
σ_B	0.356 ± 0.075	
<i>8</i> 2 <i>B</i>	0.012 ± 0.003	

Fit Results:

Comparison of results for CS Kernel in non-perturbative regime:

Fit Results: Results for intrinsic TMDPDF (& TMDFF)

Quite precise determinations if we assume a given fit form.

Extraction of Sivers function from global fit to SIDIS, DY, and W/Z data [76 bins: HERMES, COMPASS, Jlab (SIDIS); STAR(W/Z); COMPASS (DY)]

 $f_{1T}^{\perp \text{ SIDIS}} = -f_{1T}^{\perp \text{ DY}}$

N3LL analysis following SV19

Flavor dependent parametrization (no matching)

$$f_{1T;q \leftarrow h}^{\perp}(x,b) = N_q \frac{(1-x)x^{\beta_q}(1+\epsilon_q x)}{n(\beta_q,\epsilon_q)} \exp\left(-\frac{r_0 + xr_1}{\sqrt{1+r_2}x^2b^2}b^2\right)$$

Results:

Good global fit: $\chi^2/N_{pt} = 0.88$

Opposite signs for up and down Sivers functions

Data not precise enough to confirm sign flip

$$f_{1T}^{\perp \text{ SIDIS}} = + f_{1T}^{\perp \text{ DY}}$$
 gives $\chi^2/N_{pt} = 1.0$

