electron Beam Polarimetry Day 2

Ciprian Gal

With loads of borrowed materials from Dave Gaskell, Allison Zec and others

References

- CFNS Workshop on Beam Polarization and Polarimetry
 - <u>https://indico.bnl.gov/event/7583/</u>
- EICUG Working Group on Polarimetry and Ancillary Detectors (luminosity monitor)
 - <u>https://indico.bnl.gov/category/280/</u>
- Precision electron beam polarimetry for next generation nuclear physics experiments
 - Int.J.Mod.Phys.E 27 (2018) 07, 1830004, https://doi.org/10.1142/S0218301318300047
- "Conceptual Design Report of a Compton Polarimeter for Cebaf Hall A", <u>https://hallaweb.jlab.org/compton/Documentation/Technical/1996/proposil.ps.gz</u>

Recap

$$A = \frac{\text{condition}1 - \text{condition}2}{\text{condition}1 + \text{condition}2} \qquad A_{\parallel} = \frac{1}{P_e P_h} \left[\frac{N^{++} - RN^{+-}}{N^{++} + RN^{+-}} \right]^{p_i = 3.145925336973}_{p_i \text{laser_lambda} = 32e-7}$$

$$A_{\parallel} = \frac{1}{P_e P_h} \left[\frac{N^{++} - RN^{+-}}{N^{++} + RN^{+-}} \right]^{p_i = 3.145925336973}_{p_i \text{laser_lambda} = 2e-7}$$

$$A_{\parallel} = \frac{1}{P_e P_h} \left[\frac{N^{++} - RN^{+-}}{N^{++} + RN^{+-}} \right]^{p_i = 3.14592536973}_{p_i \text{order} = 2.3365489371101722e-00}$$

$$\gamma = E_{beam}/me_{lectron}$$

$$E_{\gamma} \approx E_{\text{laser}} \frac{4a\gamma^2}{1 + a\theta_{\gamma}^2 \gamma^2}$$
$$a = \frac{1}{1 + 4\gamma E_{\text{laser}}/m_e}$$

For green laser (532 nm): $\rightarrow E_{\gamma}^{max} \sim 34.5 \text{ MeV}$ at $E_{beam} = 1 \text{ GeV}$ $\rightarrow E_{\gamma}^{max} = 3.1 \text{ GeV}$ at $E_{beam} = 11 \text{ GeV}$

: hbarc = 1.9732858E-11

Recap

$$A = \frac{\text{condition}1 - \text{condition}2}{\text{condition}1 + \text{condition}2} \qquad A_{\parallel} = \frac{1}{P_e P_h} \begin{bmatrix} N^{++} - RN^{+-} \\ N^{++} + RN^{+-} \end{bmatrix}^{p_e P_h + q_e P_h + q$$

4

: hbarc = 1.9732858E-11

Scattered photon cone

Calculate the angle for which the scattered photon energy is half of the maximum energy:

```
In [5]: Theta_half = np.sqrt(1/(a*gamma**2))
print("E_g_max/2 angle (deg) = ",Theta_half*180/pi)
```

 $E_g_max/2$ angle (deg) = 0.006356700858973076

Calculate the radial position of this photon 30 meters from the interaction region:

Scattered photon cone

Calculate the angle for which the scattered photon energy is half of the maximum energy:

```
In [5]: Theta_half = np.sqrt(1/(a*gamma**2))
print("E_g_max/2 angle (deg) = ",Theta_half*180/pi)
```

```
E_g_max/2 angle (deg) = 0.006356700858973076
```

Calculate the radial position of this photon 30 meters from the interaction region:

```
In [6]: cone_size_30m = np.tan(Theta_half)*3000
print("R after 30 m = ",cone_size_30m,"cm")
```

R after 30 m = 0.33283608002590803 cm

 r_0 = classical electron radius

print("Cross section for half energy = ", compton_xsec(0.5))

Cross section for half energy = 4.288483334832458e-25

Compton cross - sections

$$\frac{d\sigma}{d\rho} = 2\pi r_0^2 a \left[\frac{\rho^2 (1-a^2)}{1-\rho(1-a)} + 1 + \left(\frac{1-\rho(1+a)}{1-\rho(1-a)} \right)^2 \right]$$

 r_0 = classical electron radius

Analyzing power: longitudinal

Longitudinal asymmetry for half energy = -0.01275548205649403

 $e'(E'_{e}, \theta_{e})$

Minney Marine

e (E_{beam})

Analyzing power: longitudinal

Analyzing power: transverse

$$A_{\rm T} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} \cos\phi \left[\rho(1-a)\frac{\sqrt{4a\rho(1-\rho)}}{(1-\rho(1-a))}\right]$$

print("Transverse asymmetry for half energy = ", compton_A_perp(0.5))

Transverse asymmetry for half energy = 0.07451809329701582

Analyzing power: transverse

$$A_{\rm T} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} \cos \phi \left[\rho(1-a) \frac{\sqrt{4a\rho(1-\rho)}}{(1-\rho(1-a))} \right]$$

Implementation

Design interaction region

Ciprian Gal

 $e'(E'_e, \theta_e)$

e (E_{beam})

γ_{laser} (λ, E_{laser}

Luminosity and x-ing angle

- $N_{\gamma(e)}$ = number of photons (electrons) per bunch
- Assumes beam sizes constant over region of overlap (ignores "hourglass effect")
- Beam size at interaction point with laser dictates luminosity (for given beam current and laser/electron beam crossing angle)

Luminosity for CW laser colliding with electron beam at non-zero crossing angle:

$$\mathcal{L} = \frac{(1 + \cos \alpha_c)}{\sqrt{2\pi}} \frac{I_e}{e} \frac{P_L \lambda}{hc^2} \frac{1}{\sqrt{\sigma_e^2 + \sigma_\gamma^2}} \frac{1}{\sin \alpha_c}$$

Pulsed laser:

print('Luminosity for CW laser/beam (small crossing angle): ', LumiCW)

Luminosity for CW laser/beam (small crossing angle): 7.033923214036582e+30

$$\mathcal{L} = f_{coll} N_{\gamma} N_e \frac{\cos\left(\alpha_c/2\right)}{2\pi} \frac{1}{\sqrt{\sigma_{x,\gamma}^2 + \sigma_{x,e}^2}} \frac{1}{\sqrt{(\sigma_{y,\gamma}^2 + \sigma_{y,e}^2)\cos^2\left(\alpha_c/2\right) + (\sigma_{z,\gamma}^2 + \sigma_{z,e}^2)\sin^2\left(\alpha_c/2\right)}}$$

Luminosity for one pulse (small crossing angle): 1.314609642805983e+24 Luminosity for Pulsed laser/beam (small crossing angle): 1.314609642805983e+32 Luminosity for Pulsed laser colliding with one beam bunch (small crossing angle): 1.0253955213886668e+29

Luminosity and x-ing angle

Pulsed laser provides higher luminosity than CW lasers (for pulsed beams)

- → As crossing angle gets smaller, improvement in rates become more comparable
- → Main advantage at small crossing angle in using pulsed laser is identification of beam bunch and ability to measure polarization profile
- → Laser beam bunch length smaller than beam bunch will allow extraction of polarization vs. time in bunch (center vs. tails)

Photon rates

Calculate the rate of scattered photons for a single bunch collision asumming a $\rho_{min} = E_{laser}/E_{\gamma max}$:

$$L = \frac{1}{\sigma} \frac{dN}{dt}.$$

Calculate the rate of scattered photons for a single bunch collision asumming a $ho_{min}=E_{laser}/E_{\gamma max}$:

```
In [ ]: LumiOneBunch=1.3416E24
fcoll=78000
rhomin = E_laser/E_g_max
xsect = integrate.quad(lambda rho: compton_xsec(rho),rhomin,1.0)
### Your code goes here
```


Photon rates

Calculate the rate of scattered photons for a single bunch collision asumming a $\rho_{min} = E_{laser}/E_{\gamma max}$:

$$L = \frac{1}{\sigma} \frac{dN}{dt}.$$

Calculate the rate of scattered photons for a single bunch collision asumming a $\rho_{min} = E_{laser}/E_{\gamma max}$:

```
In [21]: fcoll = 78000
LumiOneBunch = 1.314609642805983e+24
rhomin = E_laser/E_g_max
xsect = integrate.quad(lambda rho: compton_xsec(rho),rhomin,1.0)
rate = xsect[0]*LumiOneBunch*fcoll
print('Backscattered photon rate (Hz)', rate)
```

Backscattered photon rate (Hz) 58336.933178552485

Measurement time

Measurement time depends on luminosity, analyzing power, and measurement technique

$$t^{-1} = \mathcal{L}\sigma \left(\frac{\Delta P}{P}\right)^2 A_{method}^2$$

Average analyzing power:
$$A^2_{method} = \langle A
angle^2$$

 \rightarrow Average value of asymmetry over acceptance

Energy-weighted:

$$A^2_{method} = \left(\frac{\langle EA \rangle}{\langle E \rangle}\right)^2$$

→ Energy deposited in detector for each helicity state

Differential:

$$A^2_{method} = \langle A^2 \rangle$$

 \rightarrow Measurement of asymmetry bin-by-bin vs. energy, etc.

$$\langle A \rangle^2 < \left(\frac{\langle EA \rangle}{\langle E \rangle} \right)^2 < \langle A^2 \rangle$$

Measurement times

Using the longitudinal asymmetry function from above calculate the average asymmetry and the time it takes to reach 1% statististical precision for this measurement:

$$t^{-1} = \mathcal{L}\sigma \left(\frac{\Delta P}{P}\right)^2 A_{method}^2$$

Measurement times

Using the longitudinal asymmetry function from above calculate the average asymmetry and the time it takes to reach 1% statististical precision for this measurement:

$$t^{-1} = \mathcal{L}\sigma \left(\frac{\Delta P}{P}\right)^2 A_{method}^2$$

```
In [16]: dP=0.01
P=0.8
num = integrate.quad(lambda rho: compton_A_long(rho)*compton_xsec(rho),rhomin,1.0)
A_avg = num[0]/xsect[0]
t_avg = 1.0/(rate*dP**2*P**2*A_avg**2)
print('Average longitudinal asymmetry: ', A_avg)
print('Time for 1% measurement (s): ', t_avg)
```

Average longitudinal asymmetry: 0.03427976755269462 Time for 1% measurement (s): 227.929582570587

0.1

0.2

0.3

0.5

ρ

0.6

0.7

0.8

0.7

0.5

0.3

0.1

-0.1 -0.2

-0.3^[]

 $\mathsf{A}_{\mathsf{long}}$ 0.2 e⁻ energy: 5 GeV

e⁻ energy: 12 GeV

e⁻ energy: 18 GeV

 The power needed for the laser system is approximately 1W • The integrated method accepts the entire luminosity of the pulsed system (note the change in unit)

Ciprian Gal

 $\langle A^2 \rangle$

- Differential measurement assumes 1 photon/electron per crossing
- t[s]beam energy [GeV] $\langle A_{\rm long} \rangle^2$ time [ms] 0.0061290.0012166 0.0022 588 120.0244 70.003336 69 0.0064180.0414 0.004163 0.008530 4

 $\langle A \rangle^2$

$$t_{meth} = \left(\mathcal{L} \; \sigma_{
m Compton} \; {
m P}_{
m e}^2 {
m P}_{\gamma}^2 \; \left(rac{\Delta {
m P}_{
m e}}{{
m P}_{
m e}}
ight)^2 \; {
m A}_{
m meth}^2
ight)^{-1}$$

Time estimations: longitudinal A_{meth} Energy Integrating Single-photon Integrating

 $(\mathbf{E} \cdot \mathbf{A})^2$

 $'E^2$

Transverse asymmetry

$$A_{\rm T} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} \cos\phi \left[\rho(1-a)\frac{\sqrt{4a\rho(1-\rho)}}{(1-\rho(1-a))}\right]$$

gamma polXsec z=25000 mm

Transverse asymmetry

$$A_{\rm T} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} \cos\phi \left[\rho(1-a)\frac{\sqrt{4a\rho(1-\rho)}}{(1-\rho(1-a))}\right]$$

How can we make this measurement?

- The current configuration allows for the interaction point to be in a magnetic field free region reducing the complexity at the interaction point and allows for relatively access to insert the laser beam
- The electron detector is placed after a dipole which has enough power to energy analyze the scattered electrons at all energy set points
 - The Quad after the dipole is horizontally defocusing increasing the effectiveness of the dipole

Complex measurement

Planned Compton polarimeter location upstream of detector IP

→ Beam polarization mostly longitudinal, but some spin rotation remains before arrival at detector IP

At Compton interaction point, electrons have both longitudinal and transverse (horizontal) components

→ Longitudinal polarization measured via asymmetry as a function of backscattered photon/scattered electron energy

 \rightarrow Transverse polarization from left-right asymmetry

Beam energy	PL	P _T
5 GeV	97.6%	21.6%
10 GeV	90.7%	42.2%
18 GeV	70.8%	70.6%

Beam polarization will be fully longitudinal at detector IP, but accurate measurement of absolute polarization will require simultaneous measurement of P_L and P_T at Compton polarimeter

EIC Compton will provide first high precision measurement of P_L and P_T at the same time

Compton throughout history

Table 7. Compton polarimeters including nominal operating energies and performance. Not all Compton polarimeters are included in the table — an emphasis has been placed on those used to provide absolute beam polarization measurements.

Polarimeter	Beam energy	Laser wavelength and technology	Detection and method	Sys. uncertainty (dP/P)	References
CERN LEP	$46\mathrm{GeV}$	532 nm (pulsed)	γ /integrating	5%	99, 100
HERA LPOL	$27.5\mathrm{GeV}$	532 nm (pulsed)	γ /integrating	1.6%	85
HERA TPOL	$27.5\mathrm{GeV}$	514 nm (CW)	γ /counting	2.9%	92, 101
MIT-Bates	0.3-1 GeV	532 nm	γ /counting	6%	95, <mark>96</mark>
NIKHEF	< 1 GeV	$514\mathrm{nm}$	γ /counting	4.5% @ 440 MeV	94
Mainz A4	$0.85, 1.5\mathrm{GeV}$	514 nm intra-cavity Ar–ion	$(\gamma, e)/counting$	N/A	98
JLab Hall A	1-6 GeV	1064 nm, FP cavity	γ /counting e /counting	3% (2002) 1% (2006)	81 102
			γ /integrating	1% (2009)	1103
	$1.1{ m GeV}$	532 nm, FP cavity	γ /integrating	1.1% (2010)	104, 9
JLab Hall C	$1.1{ m GeV}$	532 nm, FP cavity	e/counting	0.6%	82
			γ /integrating	3%	105
SLD at SLAC	$45.6\mathrm{GeV}$	532 nm (pulsed)	e/multiphoton	0.5%	86, 106

JLab Hall A 2.1 GeV | 532nm FP cavity | photon/integrating | 0.52% **Phys.Rev.Lett. 129 (2022) 4, 042501

What is the problem with the Compton measurement?

What is the problem with the Compton measurement?

- Easiest at high energies
- Non-destructive, but systematics are energy dependent

Standard electron polarimetry techniques

- Compton scattering: $\vec{e} + \vec{\gamma} \rightarrow e + \gamma$
- Mott scattering: $\vec{e} + Z \rightarrow e$
 - Spin-orbit coupling of electron spin with (large Z) target nucleus
 - Useful at MeV-scale (injector) energies
- Møller scattering: $\vec{e} + \vec{e} \rightarrow e + e$
 - Atomic electrons in Fe (or Fe-alloy) polarized using external magnetic field
 - Can be used at MeV to GeV-scale energies rapid, precise measurements
 - Usually destructive (solid target) non-destructive measurements possible with polarized gas target, but such measurements not common

Mott polarimetry

Mott scattering: $\vec{e} + Z \rightarrow e$

→ Spin-orbit coupling of electron spin with (large Z) target nucleus gives single-spin asymmetry for transversely polarized electrons

Mott polarimetry useful at low energies \rightarrow ~ 100 keV to 5 MeV

 \rightarrow Ideal for use in polarized electron injectors

$$I(\theta) = \left(\frac{Ze^2}{2mc^2}\right)^2 \frac{(1-\beta^2)(1-\beta^2\sin^2\frac{\theta}{2})}{\beta^4\sin^2\frac{\theta}{2}}$$

$S(\theta)$ is the Sherman function

- → must be calculated from electron-nucleus cross section
- → Dominant systematic uncertainty but controlled to better than 1%

Jefferson Lab

Mott examples: JLab injector

- Optimized for operation at 5 MeV
 - Studied between 3-8 MeV
- Detectors at 172.7 degrees
 - Thin and thick scintillators
- Typically uses thin gold target (1 μm or less)
- Some backgrounds possible due to nearby beam dump
 - Has been studied using lower duty cycle beam + time of flight
- Recent extensive systematic studies yield overall systematic uncertainty < 1%

Jefferson Lab 5 MeV Mott Polarimeter

J.M. Grames et al, Phys.Rev.C 102 (2020) 1, 015501

JLab 5 MeV Mott systematics

- Much effort dedicated to demonstration of precision Mott polarimetry
- \rightarrow Improved background rejection via time-of-flight cuts
- ightarrow Dedicated studies of Sherman function
- → GEANT4 simulations showed double-scattering in target foil is only source of dependence of analyzing power on target thickness

JLab 5 MeV Mott Systematic uncertainties

Contribution	Value
Sherman function	0.50%
Target thickness extrapolation	0.25%
Device-related systematics	0.24%
Energy cut (0.1%)	
Laser polarization (0.10%)	
Scattering angle/beam energy (0.20%)	
Total	0.61%

J.M. Grames et al, Phys.Rev.C 102 (2020) 1, 015501

Møller Scattering

Longitudinally polarized electrons/target:

$$\frac{d\sigma}{d\Omega^*} = \frac{\alpha^2}{s} \frac{(3 + \cos^2 \theta^*)^2}{\sin^4 \theta^*} \left[1 + P_e P_t A_{\parallel}(\theta^*) \right]$$
$$A_{\parallel} = \frac{-(7 + \cos^2 \theta^*) \sin^2 \theta^*}{(3 + \cos^2 \theta^*)^2} \qquad \Rightarrow \text{At } \theta^* = 90 \text{ deg.} \Rightarrow -7$$

Transversely polarized electrons/target

$$A_{\perp} = \frac{-\sin^4 \theta^*}{(3 + \cos^2 \theta^*)^2} \longrightarrow \operatorname{At} \theta^* = 90 \operatorname{deg.} \rightarrow -4$$

$$P/9 = \frac{e + e \rightarrow e + e}{10^{-0.2}}$$

$$\frac{1}{9} = \frac{1}{9} = \frac{1}{9}$$

 \rightarrow

 \rightarrow

Maximum asymmetry independent of beam energy

Polarized target for Møller polarimeter

- Originally, Møller polarimeters used Fe-alloy targets, polarized in plane of the foil
 - -Used modest magnetic field
- In-plane polarized targets typically result is systematic errors of 2-3%
 - -Require careful measurement magnetization of foil
- Pure Fe saturated in 4 T field
 - -Spin polarization well known \rightarrow 0.25%
 - Temperature dependence well known
 - -No need to directly measure foil polarization

Effect	$M_s[\mu_B]$	error
Saturation magnetization (T \rightarrow 0 K,B \rightarrow 0 T)	2.2160	± 0.0008
Saturation magnetization (T=294 K, B=1 T)	2.177	± 0.002
Corrections for B=1→4 T	0.0059	±0.0002
Total magnetization	2.183	±0.002
Magnetization from orbital motion	0.0918	± 0.0033
Magnetization from spin	2.0911	± 0.004
Target electron polarization (T=294 K, B= 4 T)	0.08043	±0.00015

Foil saturation

Polarization of target not directly measured when using iron foil driven to magnetic saturation

- ightarrow Rely on knowledge of magnetic properties of iron
- → One can test that foil is in magnetic saturation using magneto-optical Kerr effect (polarization properties of light change in magnetic medium)

Can also test dependence on foil angle (misalignment) and heating

Kerr effect measurement of foil saturation

Example: Measure degree of saturation vs. applied magnetic field

 \rightarrow This can also be tested with polarimeter directly

JLab measurements of asymmetry vs. applied field

Levchuk effect

- On average, about 2 out of 26 atomic electrons in Fe atom are polarized
 - Polarized electrons are in outer shells
 - Inner shell, more tightly-bound electrons are unpolarized
- Electrons scattering from inner-shell electrons result in a "smearing" of the correlation between momentum and scattering angle
- For finite acceptance detector, this can result in lower efficiency for detection of events scattering from more tightly bound (unpolarized) electrons
- Ignoring this "Levchuk*" effect can result in incorrect polarization measurements
- First observed experimentally at SLAC in 1995 size of effect depends on detector acceptance

*L. G. Levchuk, Nucl. Instrum. Meth. A345 (1994) 496

M. Swartz et al., Nucl. Instrum. Meth. A363 (1995) 526

Møller example: JLab hall C

- First polarimeter to use high field, out-of-plane polarized target
- Detects scattered and recoil electron in coincidence
- 2 quadrupole optics maintains constant tune at detector plane, independent of beam energy
- "Moderate" acceptance mitigates Levchuk effect \rightarrow still a non-trivial source of uncertainty
- Target = pure Fe foil, brute-force polarized out of plane with 3-4 T superconducting magnet
- Target polarization uncertainty = 0.25% [NIM A 462 (2001) 382]

Møller examples: JLab hall C (systematics)

Source	Uncertainty	dA/A (%)
Beam position x	0.5 mm	0.17
$\begin{array}{c} \text{Beam position } x \\ \text{Beam position } y \end{array}$	0.5 mm	0.28
$\begin{array}{c} \text{Beam position } g \\ \text{Beam direction } x \end{array}$	0.5 mr	0.10
Beam direction y	0.5 mr	0.10
Q1 current	2% (1.9 A)	0.07
Q3 current	2.5% (3.25 A)	0.05
Q3 position	1 mm	0.10
Multiple scattering	10%	0.01
Levchuk effect	10%	0.33
Collimator positions	0.5 mm	0.03
Target temperature	100%	0.14
B-field direction	2^{o}	0.14
B-field strength	5%	0.03
Spin polarization in Fe		0.25
Electronic D.T.	100%	0.04
Solenoid focusing	100%	0.21
Solenoid position (x,y)	$0.5 \mathrm{mm}$	$\left(\begin{array}{c} 0.23 \end{array} \right)$
Additional point-to-point		0.0
High current extrapolation		0.5
Monte Carlo statistics		0.14
Total		0.85

Systematic error table from Q-Weak (2nd run) in Hall C (2012)

- → Some uncertainties larger than usual due to low beam energy (1 GeV)
- → Levchuk effect, target polarization same at all energies

Total uncertainty less than 1%

Compton example: JLab Hall A

Compton polarimeter in Hall A (similar design in Hall C):

- 1. 4 dipole chicane to deflect beam to laser system
- 2. Fabry-Perot cavity to provide kW level CW laser power
- 3. Diamond/silicon strip detectors for scattered electrons
- 4. Photon detectors operated in integrating mode

 \rightarrow Hall A has achieved dP/P=0.52% (photon detection)

Jefferson Lab

Ciprian Gal

What polarimetry systematic is reasonable for the EIC?

Backups

A-trans for 1, 5, 18 GeV (532 nm)

AT asymmetry at $\phi=0$

UD asymmetry at z=60 m

$$A_{\rm T} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} \cos\phi \left[\rho(1-a)\frac{\sqrt{4a\rho(1-\rho)}}{(1-\rho(1-a))}\right]$$

EIC - R&D Meeting

HERA LPOL

- Crossing angle 3.3 deg (58mrad)
- Single photon mode: ngamma= 0.001 per crossing; s/b=0.2; 1%msmt at 2.5h
- Multiphoton mode: ngamma=1000; pulsed laser 100Hz (HERA 10MHz); 1% 1min

Figure 1. Scheme of the cavity surrounding the electron beam pipe with the laser and main mirrors.

Jefferson Lab

Sherman function

Sherman function describes single-atom elastic scattering from atomic nucleus

Direct amplitude

Spin flip amplitude

f and g can be calculated exactly for spherically symmetric charge distribution

Knowledge of nuclear charge distribution and atomic electron distribution leads to systematic error

 \rightarrow Controlled better than 0.5% for regime 2-10 MeV

In target with finite thickness, electron may scatter more than once → Effective Sherman function
 → Controlled by making measurements at various foil thicknesses and extrapolating to zero

Mott examples: MAINZ MeV

Mott polarimeter in MAMI accelerator at Mainz installed after injector linac

Scattering angle = 164 degrees → Sherman function peaks at 2 MeV

Background from dump suppressed by using deflection magnets to steer scattered electrons to detectors – no direct line of site to beam dump

Dominant systematics from Sherman function, zerothickness extrapolation, background → GEANT simulations suggest backgrounds ~ 1%

Systematic uncertainty better than 1% achievable with some additional effort

Double-Mott polarimeter

Use double-scattering to measure effective Sherman function empirically

→ Unpolarized electrons scatter from target foil – resulting polarization: P_{scatt} = S_{eff}
 → Polarized electrons scatter from 2nd, *identical* foil

Resulting asymmetry : $A_{obs} = S^2_{eff}$

Møller polarimetry

- Møller polarimetry benefits from large longitudinal analyzing power → -7/9 (transverse → -1/9)
 - \rightarrow Asymmetry independent of energy
 - → Relatively slowly varying near ϑ_{cm} =90°
 - → Large asymmetry diluted by need to use iron foils to create polarized electrons
- Large boost results in Møller events near θ_{cm} =90° having small lab angle
 - → Magnets/spectrometer required so that detectors can be adequate distance from beam
- Dominant backgrounds from Mott scattering totally suppressed via coincidence detection of scattered and recoiling electrons
- Rates are large, so rapid measurements are easy
- The need to use Fe or Fe-alloy foils means measurement must be destructive
- Foil depolarization at high currents

Polarized target for Møller polarimeter

- Originally, Møller polarimeters used Fe-alloy targets, polarized in plane of the foil
 - -Used modest magnetic field
- In-plane polarized targets typically result is systematic errors of 2-3%
 - -Require careful measurement magnetization of foil
- Pure Fe saturated in 4 T field
 - -Spin polarization well known \rightarrow 0.25%
 - Temperature dependence well known

-No need to directly measure foil polarization

Effect	$M_s[\mu_B]$	error
Saturation magnetization (T \rightarrow 0 K,B \rightarrow 0 T)	2.2160	± 0.0008
Saturation magnetization (T=294 K, B=1 T)	2.177	± 0.002
Corrections for B=1 \rightarrow 4 T	0.0059	± 0.0002
Total magnetization	2.183	±0.002
Magnetization from orbital motion	0.0918	± 0.0033
Magnetization from spin	2.0911	± 0.004
Target electron polarization (T=294 K, B= 4 T)	0.08043	±0.00015

Foil saturation

Polarization of target not directly measured when using iron foil driven to magnetic saturation

- ightarrow Rely on knowledge of magnetic properties of iron
- → One can test that foil is in magnetic saturation using magneto-optical Kerr effect (polarization properties of light change in magnetic medium)

Can also test dependence on foil angle (misalignment) and heating

Kerr effect measurement of foil saturation

Example: Measure degree of saturation vs. applied magnetic field

 \rightarrow This can also be tested with polarimeter directly

JLab measurements of asymmetry vs. applied field

Levchuk effect

- On average, about 2 out of 26 atomic electrons in Fe atom are polarized
 - Polarized electrons are in outer shells
 - Inner shell, more tightly-bound electrons are unpolarized
- Electrons scattering from inner-shell electrons result in a "smearing" of the correlation between momentum and scattering angle
- For finite acceptance detector, this can result in lower efficiency for detection of events scattering from more tightly bound (unpolarized) electrons
- Ignoring this "Levchuk*" effect can result in incorrect polarization measurements
- First observed experimentally at SLAC in 1995 size of effect depends on detector acceptance

*L. G. Levchuk, Nucl. Instrum. Meth. A345 (1994) 496

M. Swartz et al., Nucl. Instrum. Meth. A363 (1995) 526

Møller example: SLAC E154

Single-arm polarimeter used in End Station at SLAC in the 1990's

- \rightarrow Low field, in-plane polarized target
- → 2-detectors, but did not detect scattered and recoil electrons in coincidence
- → Scattered electrons steered to detectors using dipole no focusing quads
- ightarrow Electrons detected with silicon strip detectors
- → Overall systematic uncertainty 2.4%, dominated by target polarization (1.7%) and background subtraction (2%)

Møller example: JLab hall C

- First polarimeter to use high field, out-of-plane polarized target
- Detects scattered and recoil electron in coincidence
- 2 quadrupole optics maintains constant tune at detector plane, independent of beam energy
- "Moderate" acceptance mitigates Levchuk effect \rightarrow still a non-trivial source of uncertainty
- Target = pure Fe foil, brute-force polarized out of plane with 3-4 T superconducting magnet
- Target polarization uncertainty = 0.25% [NIM A 462 (2001) 382]

Møller examples: JLab hall C (systematics)

Source	Uncertainty	dA/A (%)
Beam position x	0.5 mm	0.17
$\begin{array}{c} \text{Beam position } x \\ \text{Beam position } y \end{array}$	0.5 mm	0.28
$\begin{array}{c} \text{Beam position } g \\ \text{Beam direction } x \end{array}$	0.5 mr	0.10
Beam direction y	0.5 mr	0.10
Q1 current	2% (1.9 A)	0.07
Q3 current	2.5% (3.25 Å)	0.05
Q3 position	1 mm	0.10
Multiple scattering	10%	0.01
Levchuk effect	10%	0.33
Collimator positions	0.5 mm	0.03
Target temperature	100%	0.14
B-field direction	2^{o}	0.14
B-field strength	5%	0.03
Spin polarization in Fe		0.25
Electronic D.T.	100%	0.04
Solenoid focusing	100%	0.21
Solenoid position (x,y)	$0.5 \mathrm{mm}$	$\left(\begin{array}{c} 0.23 \end{array} \right)$
Additional point-to-point		0.0
High current extrapolation		0.5
Monte Carlo statistics		0.14
Total		0.85

Systematic error table from Q-Weak (2nd run) in Hall C (2012)

- → Some uncertainties larger than usual due to low beam energy (1 GeV)
- → Levchuk effect, target polarization same at all energies

Total uncertainty less than 1%

Møller polarimetry with atomic hydrogen

Proposal to use atomic hydrogen as target; operates at full beam current, non-destructive measurement

 \rightarrow at 300 mK, 8 T, P_e ~ 100%

- \rightarrow density ~ 3 10¹⁵ cm⁻³ \rightarrow lifetime >1 hour
- \rightarrow Expected precision < 0.5%!

Contamination, depolarization expected to be small \rightarrow < 10 ⁻⁴

Such a target allows measurements concurrent with running experiment, mitigates Levchuk effect

System is under development for use at MAINZ for the P2 experiment \rightarrow polarization measurements expected within the next couple years

Application at EIC?

 \rightarrow Gas heating by radiation drops density by factor ~ 100 to 1000

→Beam creates field 0.2-2 kV/cm – traps positive ions

Maybe some kind of H jet target can be used instead?

Jefferson Lab

Ciprian Gal

Møller polarimetry with jet targets

- Møller not typically used in storage rings since commonly used targets are destructive to the beam → iron and iron-alloy foils
- →Jet target would be non-destructive some measurements with jet targets have been done at VEPP-3 e⁻ BEAM
- What precision on target polarization can be achieved with jet targets?
- →RHIC H-JET target polarization known to better than 1%
- Some R&D would be required, but precision Møller polarimetry in storage rings may be feasible

A. Grigoriev et al, Proceedings of EPAC 2004

Compton example: JLab Hall A

Compton polarimeter in Hall A (similar design in Hall C):

- 1. 4 dipole chicane to deflect beam to laser system
- 2. Fabry-Perot cavity to provide kW level CW laser power
- 3. Diamond/silicon strip detectors for scattered electrons
- 4. Photon detectors operated in integrating mode

 \rightarrow Hall A has achieved dP/P=0.52% (photon detection)

Fabry-Perot Cavity Laser System

Due to relatively low intensity of JLab electron beam, need higher laser power

→ Use external Fabry-Perot cavity to amplify 1-10 W laser to 1-5 kW of stored laser power

Key systematic: Laser polarization in Fabry-Perot cavity → Constrain by monitoring light reflected back from cavity and measurement of cavity birefringence

Compton photon detector

- Detector Components
 - Pb Collimator
 - GSO Scintillator
 - PMT and DAQ readout
- Signals integrated over helicity state
- Measure helicity-correlated asymmetry
- LED's allow for in situ detector tests

A. Zec Thesis: DOI: <u>10.18130/xpq1-7090</u>

How the sausage is made

How to measure a Compton Asymmetry: Integrate the signal over pedestal per helicity state. Measure signal *S*, for each laser state ON, OFF and helicity state +, -. Helicity pattern difference (Δ), sum (*Y*) and asymmetry (A) distributions are calculated:

$$\begin{split} \Delta_{ON} &= S^{+}_{ON} - S^{-}_{ON} \\ \Delta_{OFF} &= S^{+}_{OFF} - S^{-}_{OFF} \\ Y_{ON} &= S^{+}_{ON} + S^{-}_{ON} \\ Y_{OFF} &= S^{+}_{OFF} + S^{-}_{OFF} \\ \mathcal{A}_{ON} &= \frac{\Delta_{ON}}{Y_{ON} - \langle Y_{OFF} \rangle} \\ \mathcal{A}_{OFF} &= \frac{\Delta_{OFF}}{\langle Y_{ON} \rangle - \langle Y_{OFF} \rangle} \end{split}$$

$$\mathcal{A}_{exp} = \langle \mathcal{A}_{ON}
angle - \langle \mathcal{A}_{OFF}
angle = \mathcal{P}_e \mathcal{P}_\gamma \langle \mathcal{A}_I$$

ON, OFF and helicity state +, -. With laser DOCP \mathcal{P}_{γ} , energy-weighted Helicity pattern difference (Δ), sum (Y), average analyzing power $\langle \mathcal{A}_I \rangle$, and beam and asymmetry (\mathcal{A}) distributions are polarization \mathcal{P}_e .

A. Zec Thesis: DOI: <u>10.18130/xpq1-7090</u>

Jefferson Lab

Ciprian Gal

Compton spectra

- Typical Compton spectrum was well characterized by simulations
- Measurements during data collection on the lead target showed a very large background from thermal neutrons

A. Zec Thesis: DOI: <u>10.18130/xpq1-7090</u>

Compton spectrum

Combined results

CREX Polarizations (Compton & Moller)

Above: Møller and Compton polarimetry data for CREX. All uncertainties plotted are statistical only. Moller data courtesy of E. King.

$$P_{\text{beam}} = (87.10 \pm 0.39)\%$$

$$\frac{\Delta P_{\text{beam}}}{P_{\text{beam}}} = 0.45\%$$

A. Zec Thesis: DOI: 10.18130/xpq1-7090

