electron Beam Polarimetry Day 2

Ciprian Gal

With loads of borrowed materials from Dave Gaskell, Allison Zec and others

References

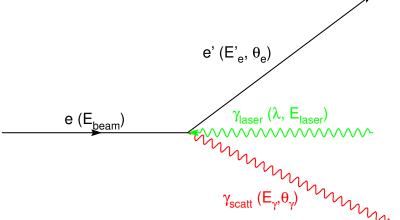
- CFNS Workshop on Beam Polarization and Polarimetry
 - https://indico.bnl.gov/event/7583/
- EICUG Working Group on Polarimetry and Ancillary Detectors (luminosity monitor)
 - https://indico.bnl.gov/category/280/
- Precision electron beam polarimetry for next generation nuclear physics experiments
 - Int.J.Mod.Phys.E 27 (2018) 07, 1830004, https://doi.org/10.1142/S0218301318300047
- "Conceptual Design Report of a Compton Polarimeter for Cebaf Hall A", <u>https://hallaweb.jlab.org/compton/Documentation/Technical/1996/proposal.ps.gz</u>

Recap

$$A = \frac{\text{condition}1 - \text{condition}2}{\text{condition}1 + \text{condition}2}$$

$$A_{\parallel} = \frac{1}{P_e P_h} \left[\frac{N^{++} - RN^{+-}}{N^{++} + RN^{+-}} \right]$$

hbarc = 1.9732858E-11pi = 3.141592653589793 $laser_lambda = 532e-7$ E_laser = hbarc*2*pi/laser_lambda print("photon energy = ",E_laser) photon energy = 2.3305489371101722e-06



$$\gamma = E_{beam}/me_{lectron}$$

$$E_{\gamma} \approx E_{\text{laser}} \frac{4a\gamma^2}{1 + a\theta_{\gamma}^2 \gamma^2}$$

$$a = \frac{1}{1 + 4\gamma E_{\text{laser}}/m_e}$$
For green laser (532 nm):
$$\Rightarrow \mathsf{E}_{\gamma}^{\text{max}} \sim 34.5 \text{ MeV at } \mathsf{E}_{\text{beam}} = 1 \text{ GeV}$$

$$\Rightarrow \mathsf{E}_{\gamma}^{\text{max}} = 3.1 \text{ GeV at } \mathsf{E}_{\text{beam}} = 11 \text{ GeV}$$

Recap

$$A = \frac{\text{condition1} - \text{condition2}}{\text{condition1} + \text{condition2}}$$

 $A_{\text{measured}} = P_{\text{beam}} A_{\text{effective}}$

$$A_{\parallel} = \frac{1}{P_e P_h} \left[\frac{N^{++} - RN^{+-}}{N^{++} + RN^{+-}} \right]$$

hbarc = 1.9732858E-11pi = 3.141592653589793 $laser_lambda = 532e-7$ E_laser = hbarc*2*pi/laser_lambda print("photon energy = ",E_laser) photon energy = 2.3305489371101722e-06

 $e'(E'_e, \theta_e)$ e (E_{beam})

Compton spectrum

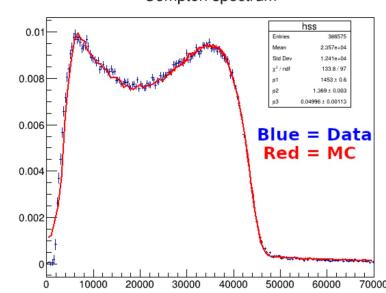
$\gamma = E_{beam}/me_{lectron}$

$$E_{\gamma} \approx E_{\text{laser}} \frac{4a\gamma^2}{1 + a\theta_{\gamma}^2 \gamma^2}$$

$$a = \frac{1}{1 + 4\gamma E_{\text{laser}}/m_e}$$
For green laser (532 nm):
$$\Rightarrow \mathsf{E}_{\gamma}^{\text{max}} \sim 34.5 \text{ MeV at E}_{\text{beam}} = 3.1 \text{ GeV at E}_{\text{beam}} = 3.1 \text{ GeV}$$

 \rightarrow E_y^{max} ~ 34.5 MeV at E_{beam}=1 GeV

 \rightarrow E_v^{max} = 3.1 GeV at E_{beam}=11 GeV



Scattered photon cone

Calculate the angle for which the scattered photon energy is half of the maximum energy:

```
In [5]: Theta_half = np.sqrt(1/(a*gamma**2))
    print("E_g_max/2 angle (deg) = ",Theta_half*180/pi)

E_g_max/2 angle (deg) = 0.006356700858973076
```

Calculate the radial position of this photon 30 meters from the interaction region:

```
In [6]:
```


Scattered photon cone

Calculate the angle for which the scattered photon energy is half of the maximum energy:

```
In [5]: Theta_half = np.sqrt(1/(a*gamma**2))
    print("E_g_max/2 angle (deg) = ",Theta_half*180/pi)

E_g_max/2 angle (deg) = 0.006356700858973076
```

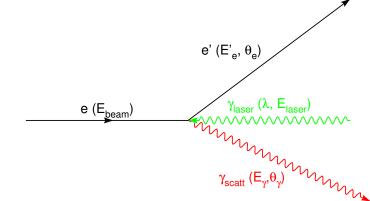
Calculate the radial position of this photon 30 meters from the interaction region:

```
In [6]: cone_size_30m = np.tan(Theta_half)*3000
print("R after 30 m = ",cone_size_30m,"cm")

R after 30 m = 0.33283608002590803 cm
```

Compton cross - sections

$$\frac{d\sigma}{d\rho} = 2\pi r_0^2 a \left[\frac{\rho^2 (1 - a^2)}{1 - \rho (1 - a)} + 1 + \left(\frac{1 - \rho (1 + a)}{1 - \rho (1 - a)} \right)^2 \right]$$



 r_0 = classical electron radius

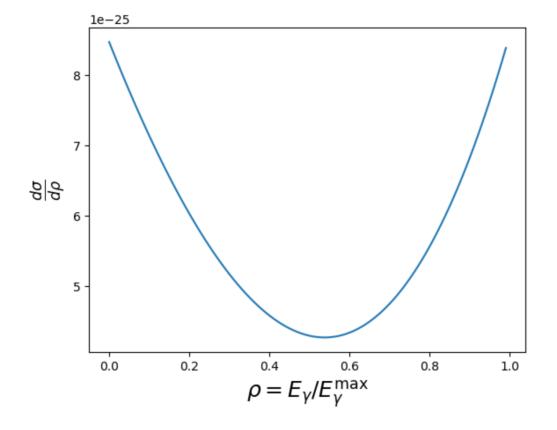
```
print("Cross section for half energy = ", compton_xsec(0.5))
```

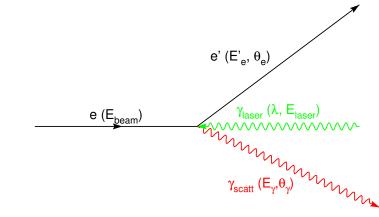
Cross section for half energy = 4.288483334832458e-25

Compton cross - sections

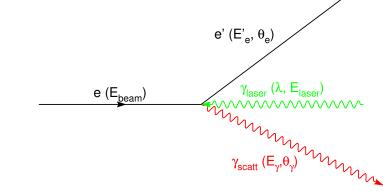
$$\frac{d\sigma}{d\rho} = 2\pi r_0^2 a \left[\frac{\rho^2 (1 - a^2)}{1 - \rho (1 - a)} + 1 + \left(\frac{1 - \rho (1 + a)}{1 - \rho (1 - a)} \right)^2 \right]$$

 r_0 = classical electron radius





Analyzing power: longitudinal

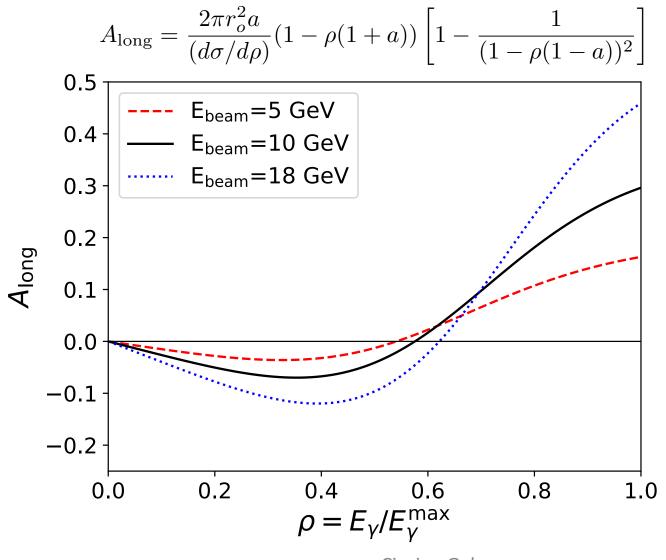


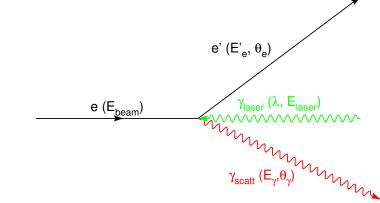
$$A_{\text{long}} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} (1 - \rho(1+a)) \left[1 - \frac{1}{(1-\rho(1-a))^2} \right]$$

print("Longitudinal asymmetry for half energy = ", compton_A_long(0.5))

Longitudinal asymmetry for half energy = -0.01275548205649403

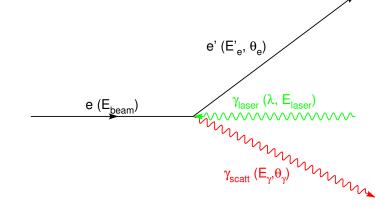
Analyzing power: longitudinal





Analyzing power: transverse

$$A_{\rm T} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} \cos \phi \left[\rho (1-a) \frac{\sqrt{4a\rho(1-\rho)}}{(1-\rho(1-a))} \right]$$

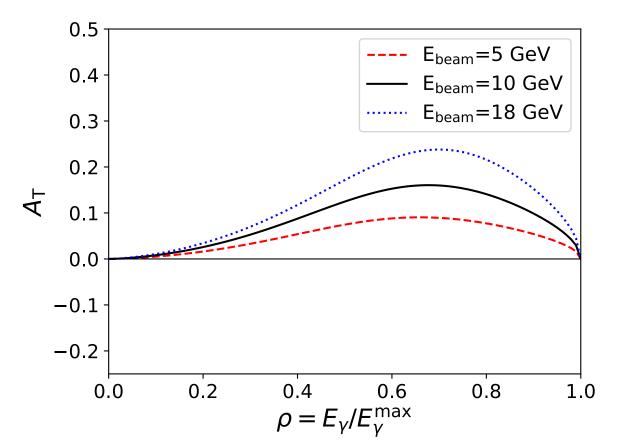


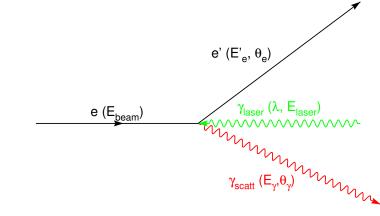
print("Transverse asymmetry for half energy = ", compton_A_perp(0.5))

Transverse asymmetry for half energy = 0.07451809329701582

Analyzing power: transverse

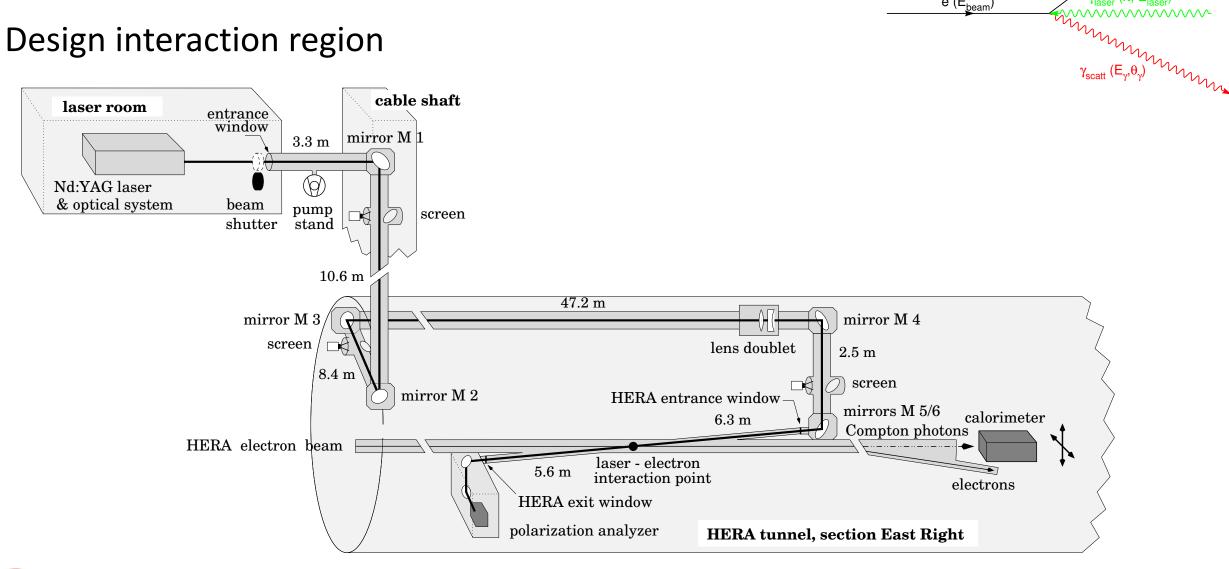
$$A_{\rm T} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} \cos \phi \left[\rho (1-a) \frac{\sqrt{4a\rho(1-\rho)}}{(1-\rho(1-a))} \right]$$





Implementation

Design interaction region



Ciprian Gal

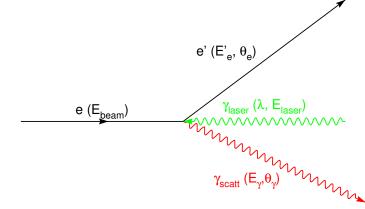
 $e'(E'_e, \theta_e)$

13

e (E_{beam})

Luminosity and x-ing angle

- $N_{\gamma(e)}$ = number of photons (electrons) per bunch
- Assumes beam sizes constant over region of overlap (ignores "hourglass effect")
- Beam size at interaction point with laser dictates luminosity (for given beam current and laser/electron beam crossing angle)



14

Luminosity for CW laser colliding with electron beam at non-zero crossing angle:

$$\mathcal{L} = \frac{(1 + \cos \alpha_c)}{\sqrt{2\pi}} \frac{I_e}{e} \frac{P_L \lambda}{hc^2} \frac{1}{\sqrt{\sigma_e^2 + \sigma_\gamma^2}} \frac{1}{\sin \alpha_c}$$

Pulsed laser:

print('Luminosity for CW laser/beam (small crossing angle): ', LumiCW)

Luminosity for CW laser/beam (small crossing angle): 7.033923214036582e+30

$$\mathcal{L} = f_{coll} N_{\gamma} N_{e} \frac{\cos(\alpha_{c}/2)}{2\pi} \frac{1}{\sqrt{\sigma_{x,\gamma}^{2} + \sigma_{x,e}^{2}}} \frac{1}{\sqrt{(\sigma_{y,\gamma}^{2} + \sigma_{y,e}^{2})\cos^{2}(\alpha_{c}/2) + (\sigma_{z,\gamma}^{2} + \sigma_{z,e}^{2})\sin^{2}(\alpha_{c}/2)}}$$

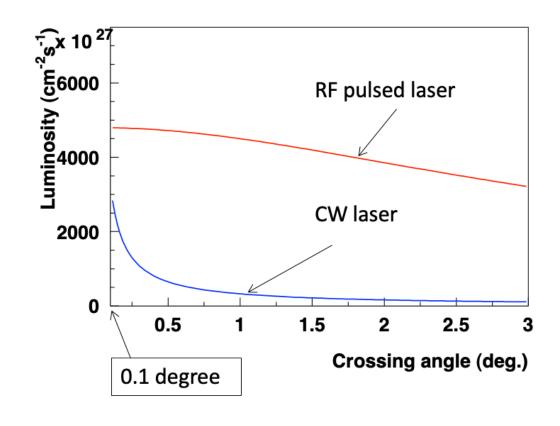
Luminosity for one pulse (small crossing angle): 1.314609642805983e+24
Luminosity for Pulsed laser/beam (small crossing angle): 1.314609642805983e+32
Luminosity for Pulsed laser colliding with one beam bunch (small crossing angle): 1.0253955213886668e+29

Luminosity and x-ing angle

 $\frac{\mathrm{e'}\left(\mathsf{E'_{e}},\theta_{\mathrm{e}}\right)}{\mathsf{e}\left(\mathsf{E'_{beam}}\right)} \frac{\gamma_{\mathrm{laser}}\left(\lambda,\mathsf{E_{laser}}\right)}{\gamma_{\mathrm{scatt}}\left(\mathsf{E_{\gamma}},\theta_{\gamma}\right)} \frac{\lambda \tau^{-}0.5 \ ps}{\mathsf{ps}}$

Pulsed laser provides higher luminosity than CW lasers (for pulsed beams)

- → As crossing angle gets smaller, improvement in rates become more comparable
- → Main advantage at small crossing angle in using pulsed laser is identification of beam bunch and ability to measure polarization profile
- → Laser beam bunch length smaller than beam bunch will allow extraction of polarization vs. time in bunch (center vs. tails)



Photon rates

Calculate the rate of scattered photons for a single bunch collision assumming a $\rho_{min} = E_{laser}/E_{\gamma max}$:

$$L=rac{1}{\sigma}rac{dN}{dt}.$$

Calculate the rate of scattered photons for a single bunch collision asumming a $ho_{min}=E_{laser}/E_{\gamma max}$:

```
In []:
    LumiOneBunch=1.3416E24
    fcoll=78000
    rhomin = E_laser/E_g_max
    xsect = integrate.quad(lambda rho: compton_xsec(rho), rhomin, 1.0)
### Your code goes here
```

16

Photon rates

Calculate the rate of scattered photons for a single bunch collision assumming a $\rho_{min} = E_{laser}/E_{\gamma max}$:

$$L=rac{1}{\sigma}rac{dN}{dt}.$$

Calculate the rate of scattered photons for a single bunch collision assumming a $\rho_{min} = E_{laser}/E_{\gamma max}$:

```
In [21]: fcoll = 78000
LumiOneBunch = 1.314609642805983e+24
rhomin = E_laser/E_g_max
xsect = integrate.quad(lambda rho: compton_xsec(rho), rhomin, 1.0)
rate = xsect[0]*LumiOneBunch*fcoll
print('Backscattered photon rate (Hz)', rate)
```

Backscattered photon rate (Hz) 58336.933178552485

Measurement time

Measurement time depends on luminosity, analyzing power, and measurement technique

$$t^{-1} = \mathcal{L}\sigma \left(\frac{\Delta P}{P}\right)^2 A_{method}^2$$

Average analyzing power: $A^2_{method} = \langle A \rangle^2$

→ Average value of asymmetry over acceptance

Energy-weighted: $A_{method}^2 = \left(\frac{\langle EA \rangle}{\langle E \rangle}\right)^2$

 $A^2_{method} = \left(\frac{\langle EA \rangle}{\langle E \rangle}\right)^2$ \rightarrow Energy deposited in detector for each helicity state

Differential: $A^2_{method} = \langle A^2 \rangle$

→ Measurement of asymmetry bin-by-bin vs. energy, etc.

$$\langle A \rangle^2 < \left(\frac{\langle EA \rangle}{\langle E \rangle} \right)^2 < \langle A^2 \rangle$$

Ciprian Gal

18

Measurement times

Using the longitudinal asymmetry function from above calculate the average asymmetry and the time it takes to reach 1% statististical precision for this measurement:

$$t^{-1} = \mathcal{L}\sigma\left(\frac{\Delta P}{P}\right)^2 A_{method}^2$$

Measurement times

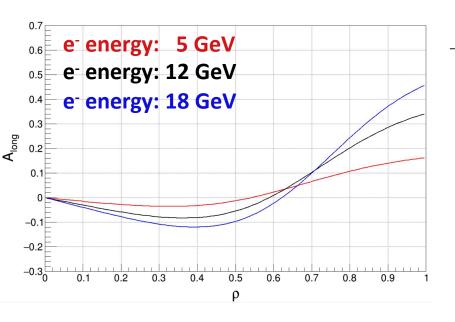
Using the longitudinal asymmetry function from above calculate the average asymmetry and the time it takes to reach 1% statististical precision for this measurement:

$$t^{-1} = \mathcal{L}\sigma \left(\frac{\Delta P}{P}\right)^2 A_{method}^2$$

```
In [16]: dP=0.01
P=0.8
num = integrate.quad(lambda rho: compton_A_long(rho)*compton_xsec(rho),rhomin,1.0)
A_avg = num[0]/xsect[0]
t_avg = 1.0/(rate*dP**2*P**2*A_avg**2)
print('Average longitudinal asymmetry: ', A_avg)
print('Time for 1% measurement (s): ', t_avg)
Average longitudinal asymmetry: 0.03427976755269462
Time for 1% measurement (s): 227.929582570587
```


Time estimations: longitudinal

$$t_{meth} = \left(\mathcal{L} \ \sigma_{\mathrm{Compton}} \ \mathrm{P_{e}^{2}P_{\gamma}^{2}} \ \left(\frac{\Delta \mathrm{P_{e}}}{\mathrm{P_{e}}}\right)^{2} \ \mathrm{A_{meth}^{2}}\right)^{-1} \qquad \qquad \\ \langle \mathrm{A}^{2} \rangle \qquad \qquad \langle \mathrm{A} \rangle^{2} \qquad \qquad \frac{\langle \mathrm{E} \cdot \mathrm{A} \rangle^{2}}{\langle \mathrm{E}^{2} \rangle}$$



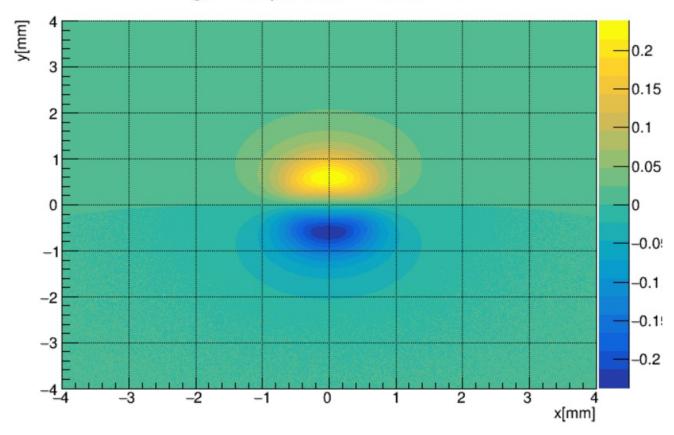
beam energy $[GeV]$	$\langle A_{\rm long}^2 \rangle$	t[s]	$\langle A_{\rm long} \rangle^2$	time [ms]	$\frac{\langle E \cdot A \rangle^2}{\langle E^2 \rangle}$	time [ms]
5	0.0061	29	0.0012	166	0.0022	88
12	0.0244	7	0.0033	69	0.0064	36
18	0.0414	4	0.0041	63	0.0085	30

- Differential measurement assumes 1 photon/electron per crossing
 - The power needed for the laser system is approximately 1W
- The integrated method accepts the entire luminosity of the pulsed system (note the change in unit)

Transverse asymmetry

$$A_{\rm T} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} \cos \phi \left[\rho (1-a) \frac{\sqrt{4a\rho(1-\rho)}}{(1-\rho(1-a))} \right]$$

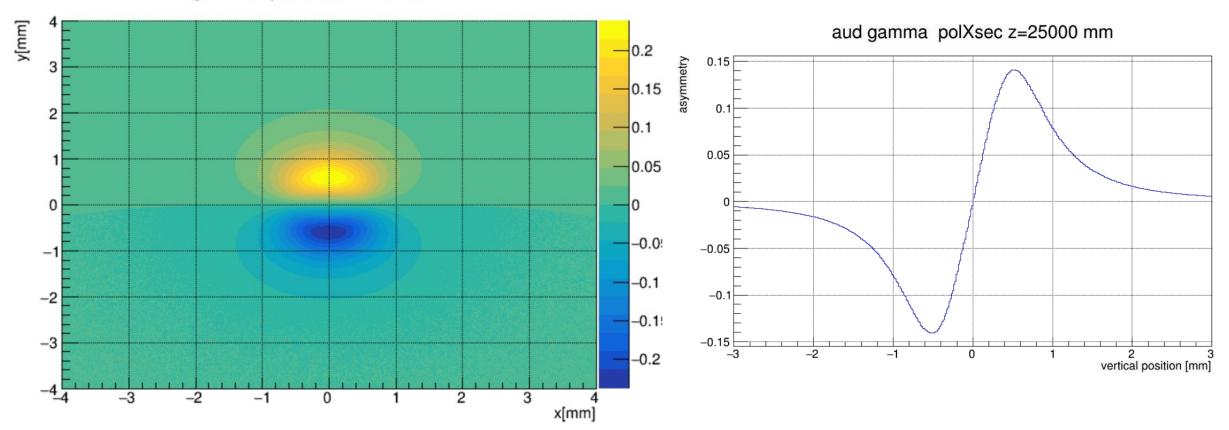
gamma polXsec z=25000 mm



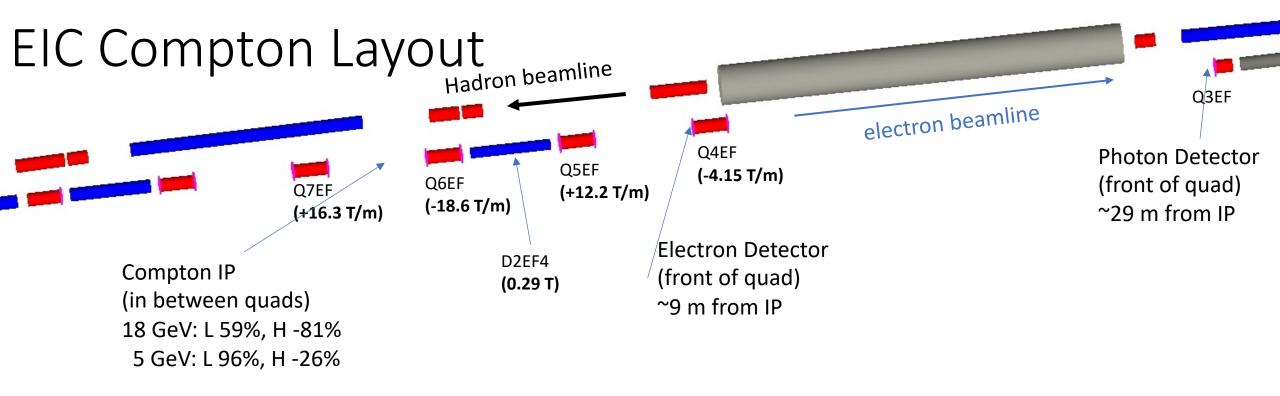
Transverse asymmetry

$$A_{\rm T} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} \cos \phi \left[\rho (1-a) \frac{\sqrt{4a\rho(1-\rho)}}{(1-\rho(1-a))} \right]$$

gamma polXsec z=25000 mm



How can we make this measurement?



- The current configuration allows for the interaction point to be in a magnetic field free region reducing the complexity at the interaction point and allows for relatively access to insert the laser beam
- The electron detector is placed after a dipole which has enough power to energy analyze the scattered electrons at all energy set points
 - The Quad after the dipole is horizontally defocusing increasing the effectiveness of the dipole

Complex measurement

Planned Compton polarimeter location upstream of detector IP

→ Beam polarization mostly longitudinal, but some spin rotation remains before arrival at detector IP

At Compton interaction point, electrons have both longitudinal and transverse (horizontal) components

- → Longitudinal polarization measured via asymmetry as a function of backscattered photon/scattered electron energy
- → Transverse polarization from left-right asymmetry

Beam energy	P _L	P _T
5 GeV	97.6%	21.6%
10 GeV	90.7%	42.2%
18 GeV	70.8%	70.6%

26

Beam polarization will be fully longitudinal at detector IP, but accurate measurement of absolute polarization will require simultaneous measurement of P_L and P_T at Compton polarimeter

EIC Compton will provide first high precision measurement of P_{L} and P_{T} at the same time

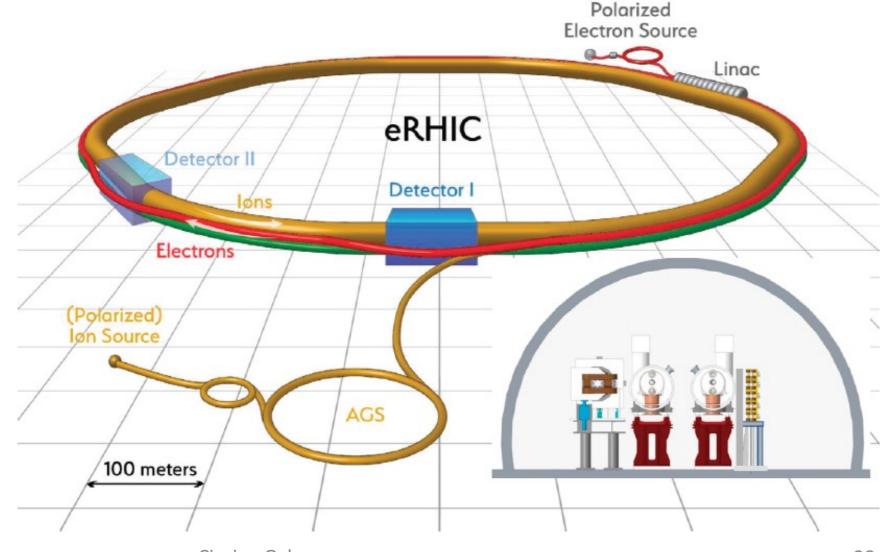
Compton throughout history

Table 7. Compton polarimeters including nominal operating energies and performance. Not all Compton polarimeters are included in the table — an emphasis has been placed on those used to provide absolute beam polarization measurements.

Polarimeter	Beam energy	Laser wavelength and technology	Detection and method	Sys. uncertainty (dP/P)	References
CERN LEP	$46\mathrm{GeV}$	532 nm (pulsed)	γ /integrating	5%	99, 100
HERA LPOL	$27.5\mathrm{GeV}$	532 nm (pulsed)	γ /integrating	1.6%	85
HERA TPOL	$27.5\mathrm{GeV}$	514 nm (CW)	γ /counting	2.9%	92, 101
MIT-Bates	0.3–1 GeV	532 nm	γ /counting	6%	95, 96
NIKHEF	<1 GeV	514 nm	γ /counting	4.5% @ 440 MeV	94
Mainz A4	$0.85, 1.5\mathrm{GeV}$	514 nm intra-cavity Ar–ion	(γ,e) /counting	N/A	98
JLab Hall A	1–6 GeV	1064 nm, FP cavity	γ /counting e /counting γ /integrating	3% (2002) 1% (2006) 1% (2009)	81 102 103
	$1.1\mathrm{GeV}$	532 nm, FP cavity	γ /integrating	1.1% (2010)	104, 9
JLab Hall C	$1.1\mathrm{GeV}$	532 nm, FP cavity	e/counting	0.6%	82
		111111111111111111111111111111111111111	γ /integrating	3%	105
SLD at SLAC	$45.6\mathrm{GeV}$	532 nm (pulsed)	$e/\mathrm{multiphoton}$	0.5%	86, 106

JLab Hall A 2.1 GeV | 532nm FP cavity | photon/integrating | 0.52% **Phys.Rev.Lett. 129 (2022) 4, 042501

What is the problem with the Compton measurement?

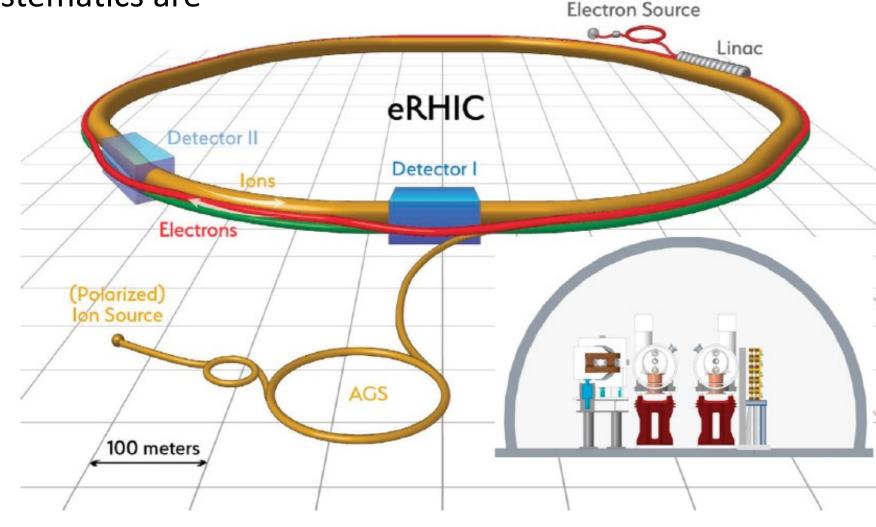


What is the problem with the Compton measurement?

Easiest at high energies

Non-destructive, but systematics are

energy dependent



Polarized

Standard electron polarimetry techniques

- Compton scattering: $\vec{e} + \vec{\gamma} \rightarrow e + \gamma$
- Mott scattering: $\vec{e} + Z \rightarrow e$
 - Spin-orbit coupling of electron spin with (large Z) target nucleus
 - Useful at MeV-scale (injector) energies
- Møller scattering: $\vec{e} + \vec{e} \rightarrow e + e$
 - Atomic electrons in Fe (or Fe-alloy) polarized using external magnetic field
 - Can be used at MeV to GeV-scale energies rapid, precise measurements
 - Usually destructive (solid target) non-destructive measurements possible with polarized gas target, but such measurements not common

Mott polarimetry

Mott scattering: $\vec{e} + Z \rightarrow e$

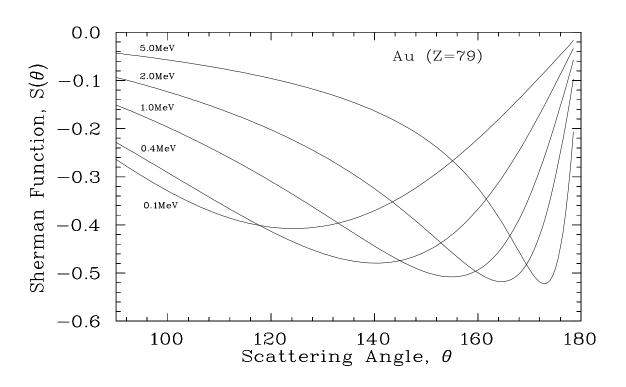
→ Spin-orbit coupling of electron spin with (large Z) target nucleus gives single-spin asymmetry for transversely polarized electrons

Mott polarimetry useful at low energies

- \rightarrow ~ 100 keV to 5 MeV
- → Ideal for use in polarized electron injectors

 $I(\theta) \rightarrow$ unpolarized cross section

$$I(\theta) = \left(\frac{Ze^2}{2mc^2}\right)^2 \frac{(1-\beta^2)(1-\beta^2\sin^2\frac{\theta}{2})}{\beta^4\sin^2\frac{\theta}{2}}$$

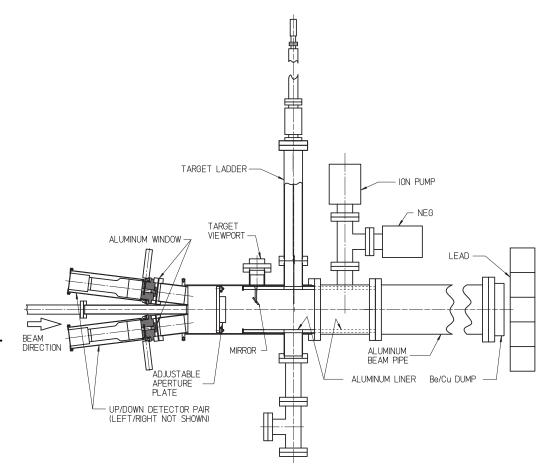


 $S(\theta)$ is the Sherman function

- → must be calculated from electron-nucleus cross section
- → Dominant systematic uncertainty but controlled to better than 1%

Mott examples: JLab injector

- Optimized for operation at 5 MeV
 - Studied between 3-8 MeV
- Detectors at 172.7 degrees
 - Thin and thick scintillators
- Typically uses thin gold target (1 μm or less)
- Some backgrounds possible due to nearby beam dump
 - Has been studied using lower duty cycle beam + time of flight
- Recent extensive systematic studies yield overall systematic uncertainty < 1%



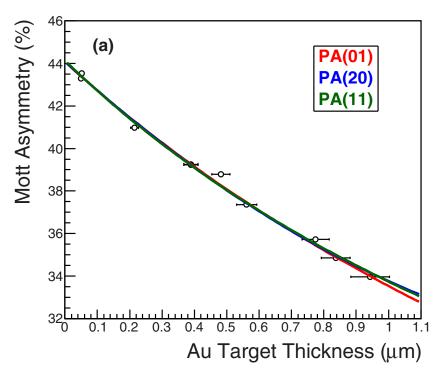
Jefferson Lab 5 MeV Mott Polarimeter

32

J.M. Grames et al, Phys.Rev.C 102 (2020) 1, 015501

JLab 5 MeV Mott systematics

- Much effort dedicated to demonstration of precision Mott polarimetry
- → Improved background rejection via time-of-flight cuts
- → Dedicated studies of Sherman function
- → GEANT4 simulations showed double-scattering in target foil is only source of dependence of analyzing power on target thickness



JLab 5 MeV Mott Systematic uncertainties

Contribution	Value
Sherman function	0.50%
Target thickness extrapolation	0.25%
Device-related systematics	0.24%
Energy cut (0.1%)	
Laser polarization (0.10%)	
Scattering angle/beam energy (0.20%)	
Total	0.61%

J.M. Grames et al, Phys.Rev.C 102 (2020) 1, 015501

Ciprian Gal 33

Møller Scattering

Longitudinally polarized electrons/target:

$$\frac{d\sigma}{d\Omega^*} = \frac{\alpha^2}{s} \frac{(3 + \cos^2 \theta^*)^2}{\sin^4 \theta^*} \left[1 + P_e P_t A_{\parallel}(\theta^*) \right]$$

$$A_{\parallel} = \frac{-(7 + \cos^2 \theta^*) \sin^2 \theta^*}{(3 + \cos^2 \theta^*)^2}$$
 \rightarrow At θ^* =90 deg. \rightarrow -7/9

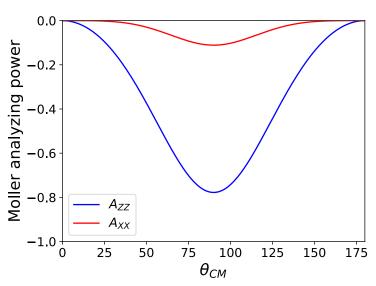
$$\rightarrow$$
 At θ^* =90 deg. \rightarrow -7/9

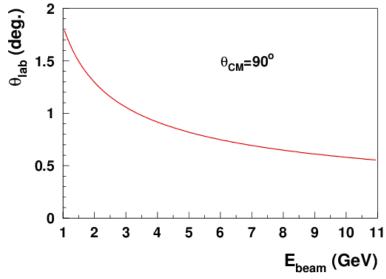
Transversely polarized electrons/target

$$A_{\perp} = \frac{-\sin^4 \theta^*}{(3 + \cos^2 \theta^*)^2}$$

$$\rightarrow$$
 At θ^* =90 deg. \rightarrow -1/9



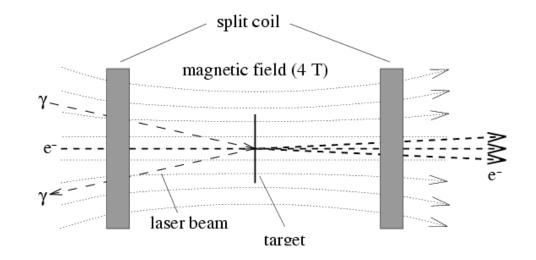




Maximum asymmetry independent of beam energy

Polarized target for Møller polarimeter

- Originally, Møller polarimeters used Fe-alloy targets, polarized in plane of the foil
 - Used modest magnetic field
- In-plane polarized targets typically result is systematic errors of 2-3%
 - Require careful measurement magnetization of foil
- Pure Fe saturated in 4 T field
 - -Spin polarization well known → 0.25%
 - Temperature dependence well known
 - No need to directly measure foil polarization



Effect	$M_s[\mu_B]$	error
Saturation magnetization (T→0 K,B→0 T)	2.2160	±0.0008
Saturation magnetization (T=294 K, B=1 T)	2.177	±0.002
Corrections for B=1→4 T	0.0059	±0.0002
Total magnetization	2.183	±0.002
Magnetization from orbital motion	0.0918	±0.0033
Magnetization from spin	2.0911	±0.004
Target electron polarization (T=294 K, B= 4 T)	0.08043	±0.00015

Ciprian Gal

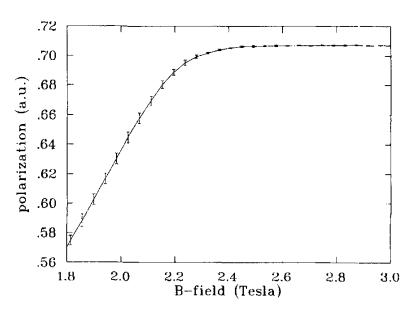
35

Foil saturation

Polarization of target not directly measured when using iron foil driven to magnetic saturation

- → Rely on knowledge of magnetic properties of iron
- → One can test that foil is in magnetic saturation using magneto-optical Kerr effect (polarization properties of light change in magnetic medium)

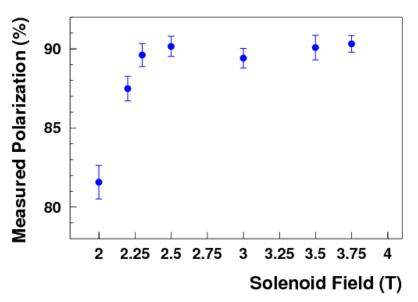
Can also test dependence on foil angle (misalignment) and heating



Kerr effect measurement of foil saturation

Example: Measure degree of saturation vs. applied magnetic field

→ This can also be tested with polarimeter directly



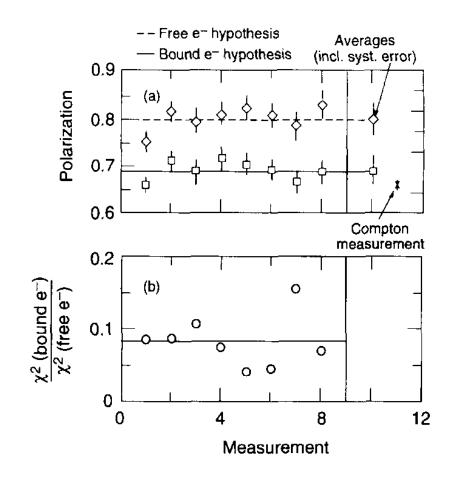
JLab measurements of asymmetry vs. applied field

Ciprian Gal 36

Levchuk effect

- On average, about 2 out of 26 atomic electrons in Fe atom are polarized
 - Polarized electrons are in outer shells
 - Inner shell, more tightly-bound electrons are unpolarized
- Electrons scattering from inner-shell electrons result in a "smearing" of the correlation between momentum and scattering angle
- For finite acceptance detector, this can result in lower efficiency for detection of events scattering from more tightly bound (unpolarized) electrons
- Ignoring this "Levchuk*" effect can result in incorrect polarization measurements
- First observed experimentally at SLAC in 1995 size of effect depends on detector acceptance

*L. G. Levchuk, Nucl. Instrum. Meth. A345 (1994) 496

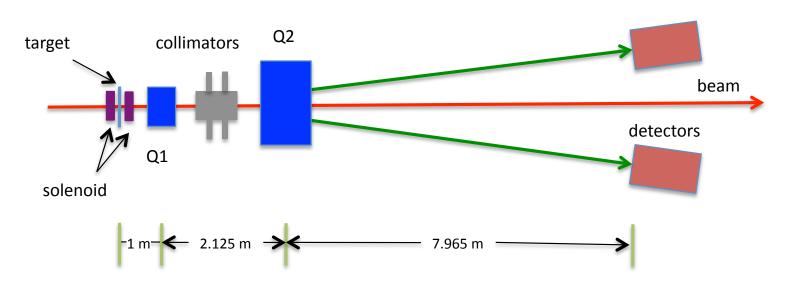


M. Swartz et al., Nucl. Instrum. Meth. A363 (1995) 526

37

Møller example: JLab hall C

- First polarimeter to use high field, out-of-plane polarized target
- Detects scattered and recoil electron in coincidence
- 2 quadrupole optics maintains constant tune at detector plane, independent of beam energy
- "Moderate" acceptance mitigates Levchuk effect → still a non-trivial source of uncertainty
- Target = pure Fe foil, brute-force polarized out of plane with 3-4 T superconducting magnet
- Target polarization uncertainty = 0.25% [NIM A 462 (2001) 382]



Ciprian Gal

Møller examples: JLab hall C (systematics)

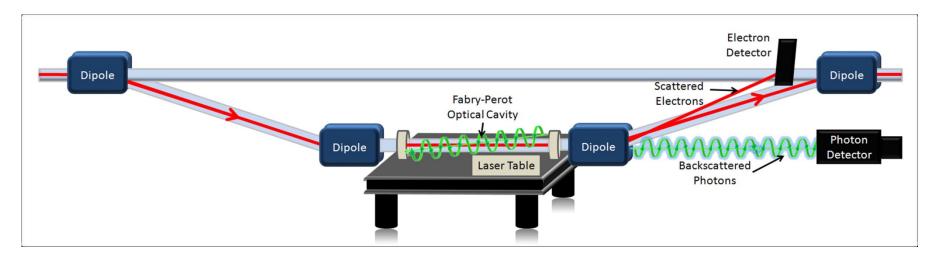
Uncertainty	dA/A (%)
•	0.17
	0.28
	0.10
	0.10
	0.07
\	0.05
, , ,	0.10
	0.01
	0.33
	0.03
	0.14
	0.14
_	0.03
370	0.25
100%	0.04
	0.21
	$\begin{pmatrix} 0.21 \\ 0.23 \end{pmatrix}$
0.0 11111	0.0
	0.5
	0.14
	0.85
	0.5 mm 0.5 mm 0.5 mr 0.5 mr 2% (1.9 A) 2.5% (3.25 A) 1 mm 10% 0.5 mm 100% 2° 5% 100% 100% 0.5 mm

Systematic error table from Q-Weak (2nd run) in Hall C (2012)

- → Some uncertainties larger than usual due to low beam energy (1 GeV)
- → Levchuk effect, target polarization same at all energies

Total uncertainty less than 1%

Compton example: JLab Hall A



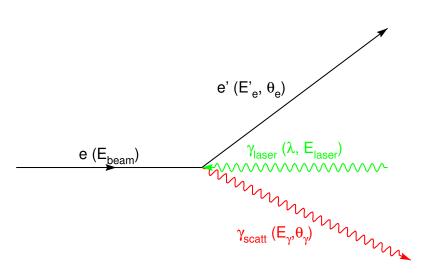
Compton polarimeter in Hall A (similar design in Hall C):

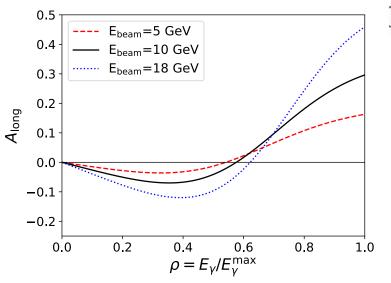
- 1. 4 dipole chicane to deflect beam to laser system
- 2. Fabry-Perot cavity to provide kW level CW laser power
- 3. Diamond/silicon strip detectors for scattered electrons
- 4. Photon detectors operated in integrating mode

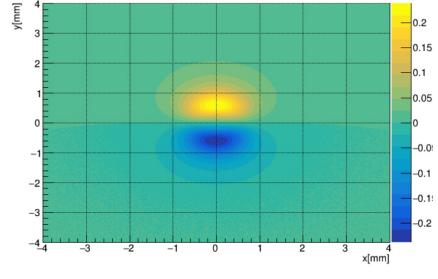
→ Hall A has achieved dP/P=0.52% (photon detection)

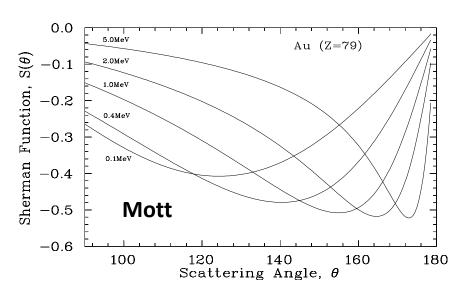
$$A_{\parallel} = \frac{1}{P_e P_h} \left[\frac{N^{++} - RN^{+-}}{N^{++} + RN^{+-}} \right]$$

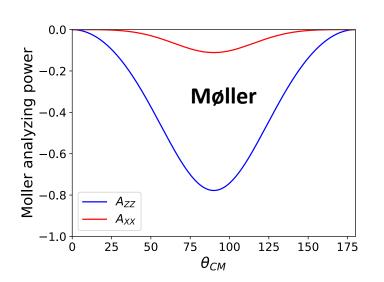
$A_{\text{measured}} = P_{\text{beam}} A_{\text{effective}}$









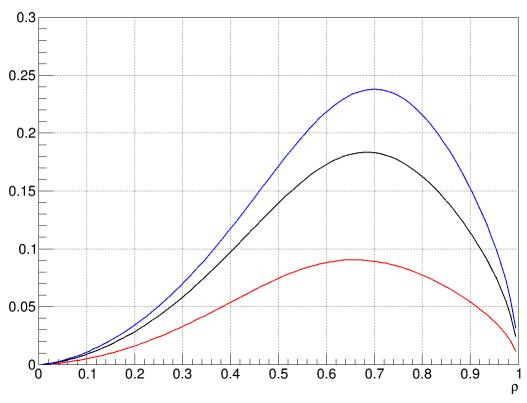


What polarimetry systematic is reasonable for the EIC?

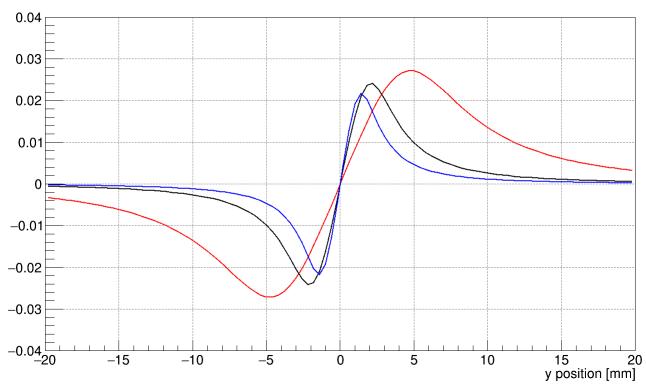
Backups

A-trans for 1, 5, 18 GeV (532 nm)

AT asymmetry at $\phi=0$

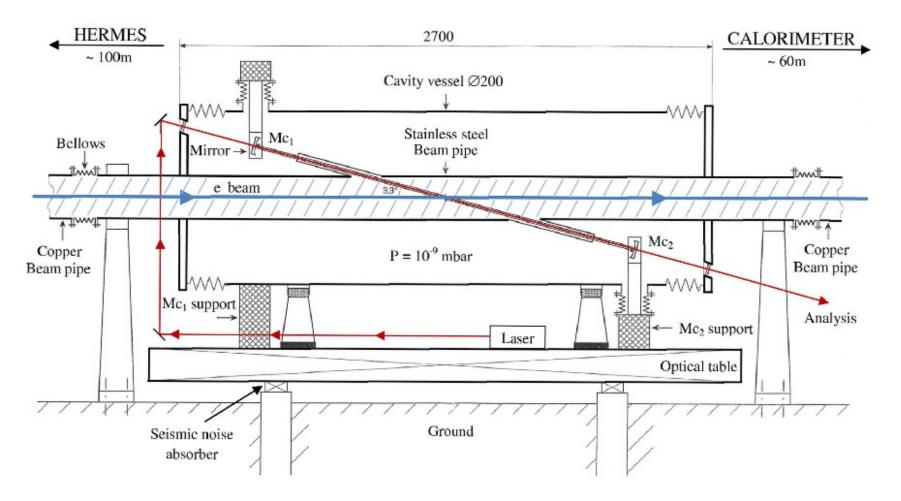


UD asymmetry at z=60 m



$$A_{\rm T} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} \cos \phi \left[\rho (1-a) \frac{\sqrt{4a\rho(1-\rho)}}{(1-\rho(1-a))} \right]$$

HERA LPOL



- Crossing angle 3.3 deg (58mrad)
- Single photon mode: ngamma= 0.001 per crossing; s/b=0.2; 1%msmt at 2.5h
- Multiphoton mode: ngamma=1000; pulsed laser 100Hz (HERA 10MHz); 1% 1min

Figure 1. Scheme of the cavity surrounding the electron beam pipe with the laser and main mirrors.

Sherman function

Sherman function describes single-atom elastic scattering from atomic nucleus

$$S(\theta) = i \frac{fg^* - gf^*}{f^2 + g^2}$$

Direct amplitude

Spin flip amplitude

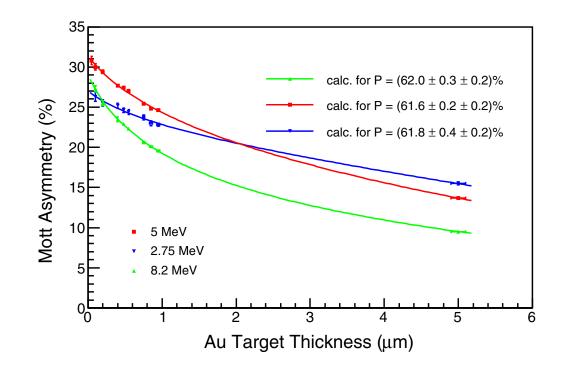
f and g can be calculated exactly for spherically symmetric charge distribution

Knowledge of nuclear charge distribution and atomic electron distribution leads to systematic error

→ Controlled better than 0.5% for regime 2-10 MeV

In target with finite thickness, electron may scatter more than once → Effective Sherman function

→ Controlled by making measurements at various foil thicknesses and extrapolating to zero



Mott examples: MAINZ MeV

Mott polarimeter in MAMI accelerator at Mainz installed after injector linac

Scattering angle = 164 degrees

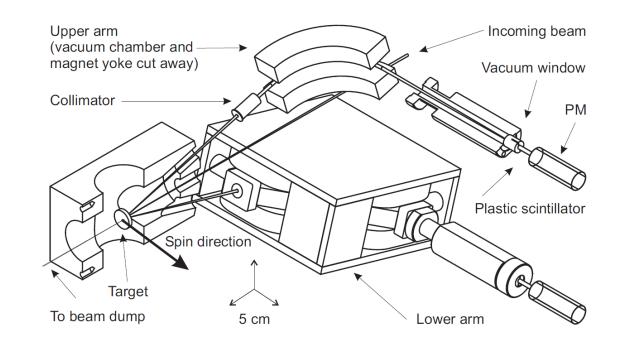
→ Sherman function peaks at 2 MeV

Background from dump suppressed by using deflection magnets to steer scattered electrons to detectors – no direct line of site to beam dump

Dominant systematics from Sherman function, zerothickness extrapolation, background

→ GEANT simulations suggest backgrounds ~ 1%

Systematic uncertainty better than 1% achievable with some additional effort

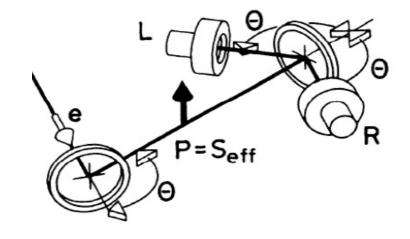


Double-Mott polarimeter

Use double-scattering to measure effective Sherman function empirically

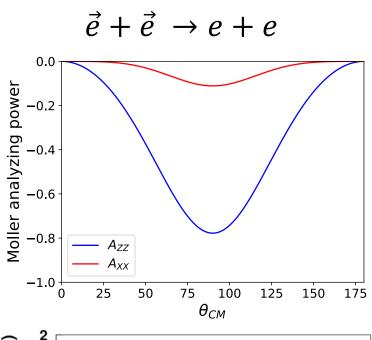
- \rightarrow Unpolarized electrons scatter from target foil resulting polarization: $P_{scatt} = S_{eff}$
- → Polarized electrons scatter from 2nd, *identical* foil

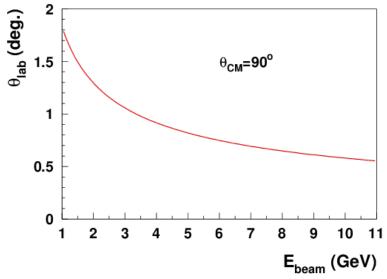
Resulting asymmetry : $A_{obs} = S_{eff}^2$



Møller polarimetry

- Møller polarimetry benefits from large longitudinal analyzing power → -7/9 (transverse → -1/9)
 - → Asymmetry independent of energy
 - \rightarrow Relatively slowly varying near ϑ_{cm} =90°
 - → Large asymmetry diluted by need to use iron foils to create polarized electrons
- Large boost results in Møller events near θ_{cm} =90° having small lab angle
 - → Magnets/spectrometer required so that detectors can be adequate distance from beam
- Dominant backgrounds from Mott scattering totally suppressed via coincidence detection of scattered and recoiling electrons
- Rates are large, so rapid measurements are easy
- The need to use Fe or Fe-alloy foils means measurement must be destructive
- Foil depolarization at high currents

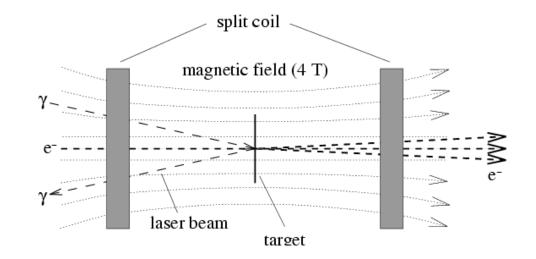




49

Polarized target for Møller polarimeter

- Originally, Møller polarimeters used Fe-alloy targets, polarized in plane of the foil
 - Used modest magnetic field
- In-plane polarized targets typically result is systematic errors of 2-3%
 - Require careful measurement magnetization of foil
- Pure Fe saturated in 4 T field
 - -Spin polarization well known → 0.25%
 - Temperature dependence well known
 - No need to directly measure foil polarization



Effect	$M_s[\mu_B]$	error
Saturation magnetization (T→0 K,B→0 T)	2.2160	±0.0008
Saturation magnetization (T=294 K, B=1 T)	2.177	±0.002
Corrections for B=1→4 T	0.0059	±0.0002
Total magnetization	2.183	±0.002
Magnetization from orbital motion	0.0918	±0.0033
Magnetization from spin	2.0911	±0.004
Target electron polarization (T=294 K, B= 4 T)	0.08043	±0.00015

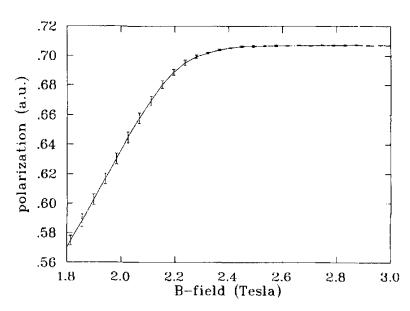
Ciprian Gal

Foil saturation

Polarization of target not directly measured when using iron foil driven to magnetic saturation

- → Rely on knowledge of magnetic properties of iron
- → One can test that foil is in magnetic saturation using magneto-optical Kerr effect (polarization properties of light change in magnetic medium)

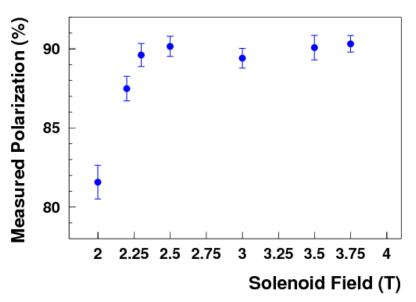
Can also test dependence on foil angle (misalignment) and heating



Kerr effect measurement of foil saturation

Example: Measure degree of saturation vs. applied magnetic field

→ This can also be tested with polarimeter directly

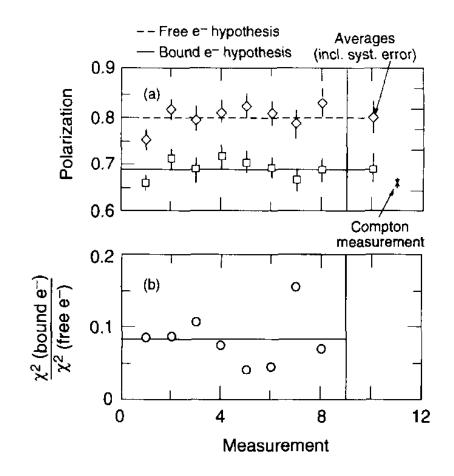


JLab measurements of asymmetry vs. applied field

Levchuk effect

- On average, about 2 out of 26 atomic electrons in Fe atom are polarized
 - Polarized electrons are in outer shells
 - Inner shell, more tightly-bound electrons are unpolarized
- Electrons scattering from inner-shell electrons result in a "smearing" of the correlation between momentum and scattering angle
- For finite acceptance detector, this can result in lower efficiency for detection of events scattering from more tightly bound (unpolarized) electrons
- Ignoring this "Levchuk*" effect can result in incorrect polarization measurements
- First observed experimentally at SLAC in 1995 size of effect depends on detector acceptance

*L. G. Levchuk, Nucl. Instrum. Meth. A345 (1994) 496



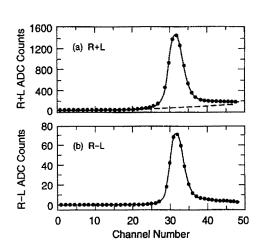
M. Swartz et al., Nucl. Instrum. Meth. A363 (1995) 526

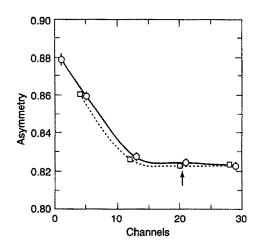
52

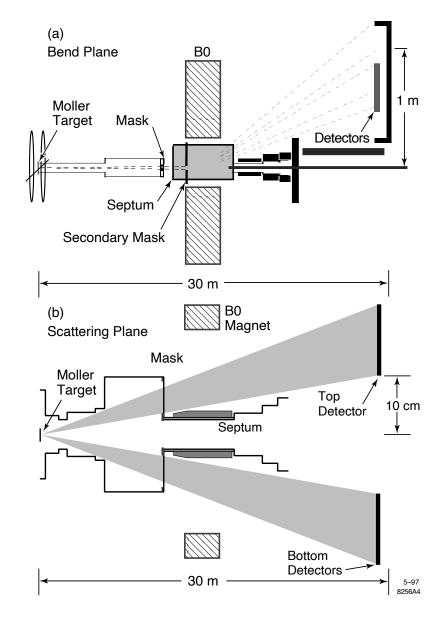
Møller example: SLAC E154

Single-arm polarimeter used in End Station at SLAC in the 1990's

- → Low field, in-plane polarized target
- → 2-detectors, but did not detect scattered and recoil electrons in coincidence
- → Scattered electrons steered to detectors using dipole no focusing quads
- → Electrons detected with silicon strip detectors
- → Overall systematic uncertainty 2.4%, dominated by target polarization (1.7%) and background subtraction (2%)



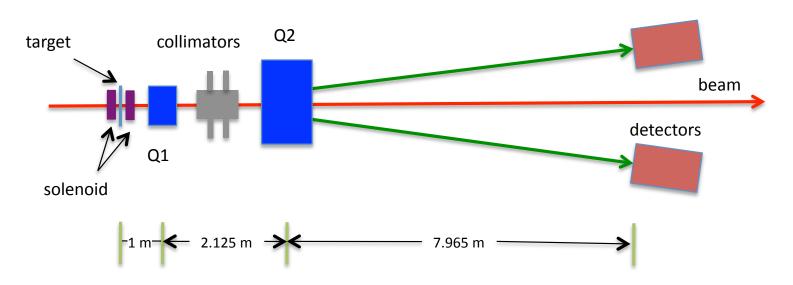




Ciprian Gal

Møller example: JLab hall C

- First polarimeter to use high field, out-of-plane polarized target
- Detects scattered and recoil electron in coincidence
- 2 quadrupole optics maintains constant tune at detector plane, independent of beam energy
- "Moderate" acceptance mitigates Levchuk effect → still a non-trivial source of uncertainty
- Target = pure Fe foil, brute-force polarized out of plane with 3-4 T superconducting magnet
- Target polarization uncertainty = **0.25%** [NIM A 462 (2001) 382]



Ciprian Gal

Møller examples: JLab hall C (systematics)

Source	Uncertainty	dA/A (%)
Beam position x	0.5 mm	0.17
Beam position y	0.5 mm $0.5 mm$	0.28
1		
Beam direction x	$0.5 \mathrm{mr}$	0.10
Beam direction y	$0.5 \mathrm{mr}$	0.10
Q1 current	2% (1.9 A)	0.07
Q3 current	2.5% (3.25 A)	0.05
Q3 position	$1 \mathrm{\ mm}$	0.10
Multiple scattering	10%	0.01
Levchuk effect	10%	$\left(0.33\right)$
Collimator positions	$0.5 \mathrm{\ mm}$	0.03
Target temperature	100%	0.14
B-field direction	2^o	0.14
B-field strength	5%	0.03
Spin polarization in Fe		0.25
Electronic D.T.	100%	0.04 /
Solenoid focusing	100%	0.21
Solenoid position (x,y)	$0.5 \mathrm{\ mm}$	0.23
Additional point—to—point		0.0
High current extrapolation		0.5
Monte Carlo statistics		0.14
Total		0.85

Systematic error table from Q-Weak (2nd run) in Hall C (2012)

- → Some uncertainties larger than usual due to low beam energy (1 GeV)
- → Levchuk effect, target polarization same at all energies

Total uncertainty less than 1%

Møller polarimetry with atomic hydrogen

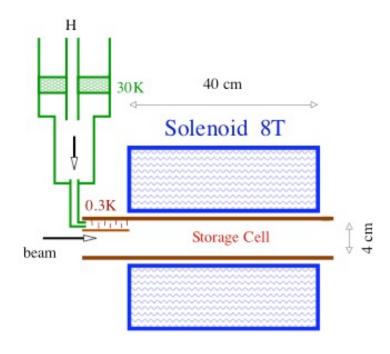
Proposal to use atomic hydrogen as target; operates at full beam current, non-destructive measurement

- \rightarrow at 300 mK, 8 T, P_e ~ 100%
- \rightarrow density ~ 3 10¹⁵ cm⁻³
- →lifetime >1 hour
- →Expected precision < 0.5%!

Contamination, depolarization expected to be small \rightarrow < 10 ⁻⁴

Such a target allows measurements concurrent with running experiment, mitigates Levchuk effect

System is under development for use at MAINZ for the P2 experiment → polarization measurements expected within the next couple years



Application at EIC?

- → Gas heating by radiation drops density by factor ~ 100 to 1000
- →Beam creates field 0.2-2 kV/cm traps positive ions

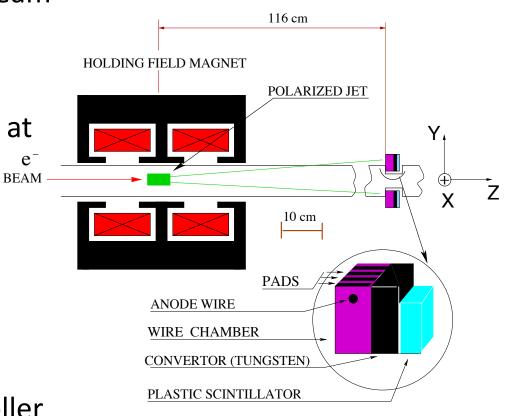
Maybe some kind of H jet target can be used instead?

Møller polarimetry with jet targets

 Møller not typically used in storage rings since commonly used targets are destructive to the beam iron and iron-alloy foils

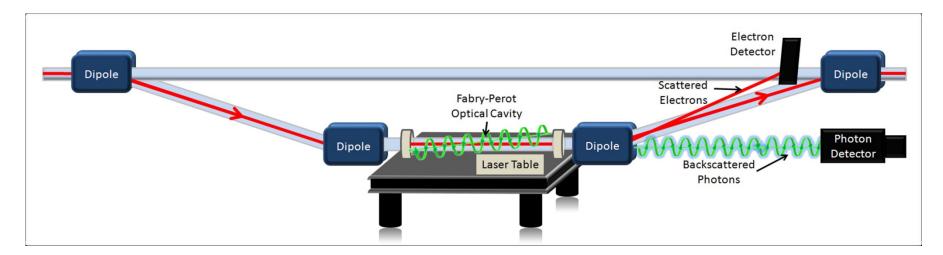
→ Jet target would be non-destructive – some measurements with jet targets have been done at VEPP-3

- What precision on target polarization can be achieved with jet targets?
- →RHIC H-JET target polarization known to better than 1%
- Some R&D would be required, but precision Møller polarimetry in storage rings may be feasible



A. Grigoriev et al, Proceedings of EPAC 2004

Compton example: JLab Hall A



Compton polarimeter in Hall A (similar design in Hall C):

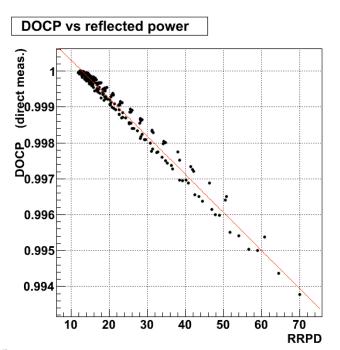
- 1. 4 dipole chicane to deflect beam to laser system
- 2. Fabry-Perot cavity to provide kW level CW laser power
- 3. Diamond/silicon strip detectors for scattered electrons
- 4. Photon detectors operated in integrating mode

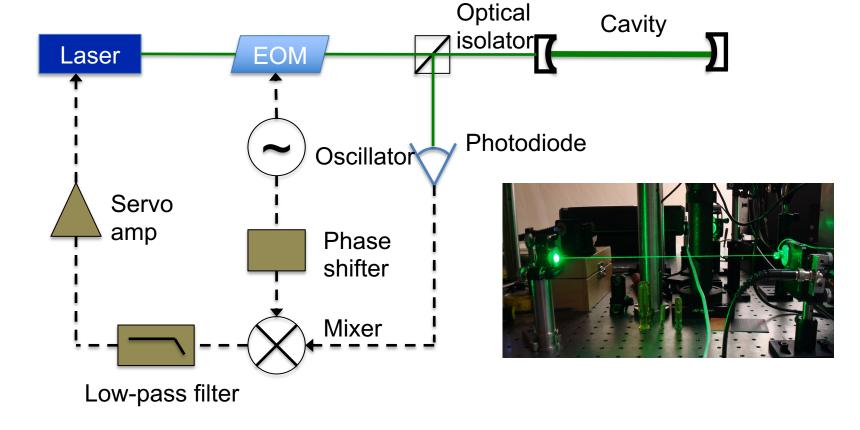
→ Hall A has achieved dP/P=0.52% (photon detection)

Fabry-Perot Cavity Laser System

Due to relatively low intensity of JLab electron beam, need higher laser power

→ Use external Fabry-Perot cavity to amplify 1-10 W laser to 1-5 kW of stored laser power



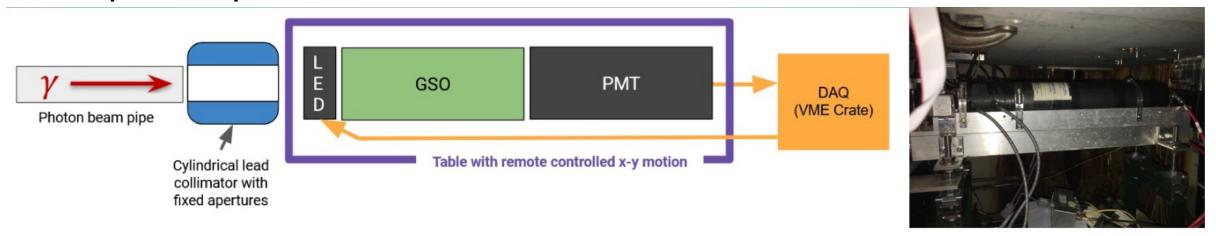


Key systematic: Laser polarization in Fabry-Perot cavity

→ Constrain by monitoring light reflected back from cavity and measurement of cavity birefringence

Ciprian Gal

Compton photon detector



- Detector Components
 - Pb Collimator
 - GSO Scintillator
 - PMT and DAQ readout
- Signals integrated over helicity state
- Measure helicity-correlated asymmetry
- LED's allow for in situ detector tests

Single Compton-Edge CREX Pulse

A. Zec Thesis: DOI: <u>10.18130/xpq1-7090</u>

200

150

1.5 µs window

Ciprian Gal 60

How the sausage is made

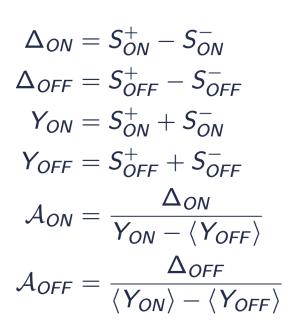
How to measure a Compton

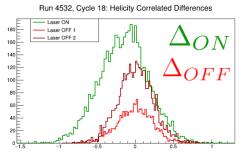
Asymmetry: Integrate the signal over pedestal per helicity state.

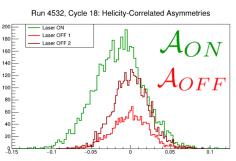
Measure signal S, for each laser state ON, OFF and helicity state +, -. and asymmetry (A) distributions are calculated:

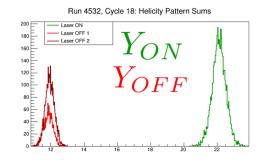
$$\mathcal{A}_{\mathsf{exp}} = \langle \mathcal{A}_{\mathsf{ON}}
angle - \langle \mathcal{A}_{\mathsf{OFF}}
angle = \mathcal{P}_{\mathsf{e}} \mathcal{P}_{\gamma} \langle \mathcal{A}_{\mathsf{I}}
angle$$

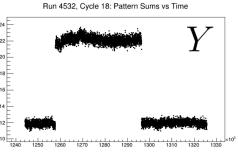
With laser DOCP \mathcal{P}_{γ} , energy-weighted Helicity pattern difference (Δ) , sum (Y), average analyzing power (A_I) , and beam polarization \mathcal{P}_{ϵ} .







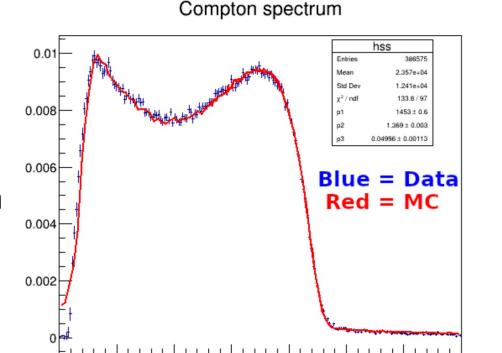


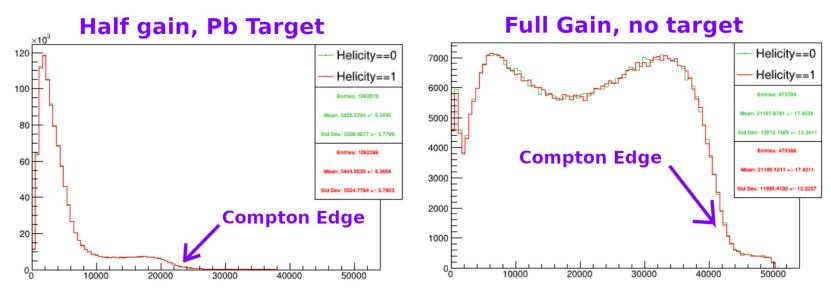


A. Zec Thesis: DOI: 10.18130/xpq1-7090

Compton spectra

- Typical Compton spectrum was well characterized by simulations
- Measurements during data collection on the lead target showed a very large background from thermal neutrons



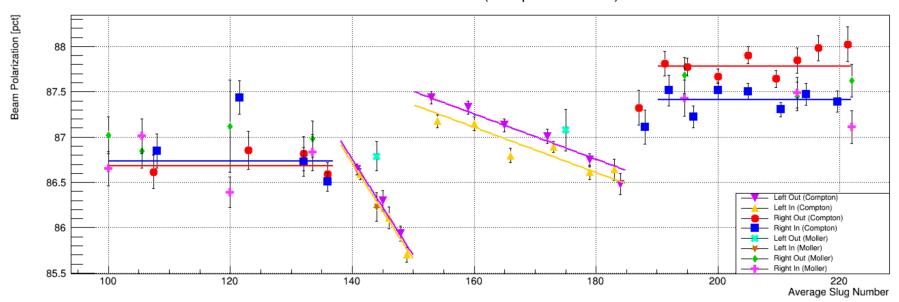


A. Zec Thesis: DOI: <u>10.18130/xpq1-7090</u>

Jefferson Lab

Combined results

CREX Polarizations (Compton & Moller)



Above: Møller and Compton polarimetry data for CREX. All uncertainties plotted are statistical only. Moller data courtesy of E. King.

$$P_{\text{beam}} = (87.10 \pm 0.39)\%$$

$$\frac{\Delta P_{\text{beam}}}{P_{\text{beam}}} = 0.45\%$$

A. Zec Thesis: DOI: <u>10.18130/xpq1-7090</u>

