Small x physics: from HERA, through LHC to EIC

Anna Staśto
Penn State University

Outline

Lecture 1

- DIS paradigm: collinear factorization and DGLAP evolution
- Why small x ? A bit of Pomeron history
- BFKL evolution at small x
- NLL BFKL and the problems with convergence
- Collinear resummation at small x
- Parton saturation
- Nonlinear evolution equation. Saturation scale
- Impact parameter dependence ${ }^{*}$)

Outline

Lecture 2

- Is BFKL needed ? DGLAP success
- Hints of small x physics in the structure function data
- Two-scales processes
- Forward jet in DIS
- $\gamma^{*} \gamma^{*}$ at LEP
- Mueller-Navelet jets at pp collider
- Searching for saturation: small x and/or large A
- Diffraction at small x and nuclei

Deep Inelastic Scattering

Inelastic scattering off proton

Elastic scattering off parton

$$
\begin{gathered}
Q^{2}=-q^{2} \quad \begin{array}{l}
\text { Photon virtuality } \\
\text { resolving power }
\end{array} \\
x=\frac{Q^{2}}{2 P \cdot q} \simeq \frac{Q^{2}}{Q^{2}+W^{2}} \quad \text { Bjorken } \mathrm{x}
\end{gathered}
$$

$$
s_{\gamma^{*} p} \equiv W^{2}=(p+q)^{2} \underset{\substack{\text { photal energy of } \\
\text { system }}}{\begin{array}{l}
\text { ototon }
\end{array}}
$$

$$
s_{e p}=(p+k)^{2}
$$

total energy of electron-proton system
x has the interpretation of the longitudinal momentum fraction of the proton carried by the struck quark (in the frame where proton is fast)

$$
x \simeq \xi
$$

Deep Inelastic Scattering: structure functions

Inclusive DIS cross section for $l p \rightarrow l X \quad\left(l\right.$ charged lepton, $\left.Q^{2} \ll M_{Z}^{2}, s \gg M_{p}^{2}\right)$

$$
\begin{aligned}
& \quad \frac{d^{2} \sigma}{d x d Q^{2}}=\frac{2 \pi \alpha_{\mathrm{em}}^{2}}{Q^{4} x}\left[\left(1+(1-y)^{2}\right) F_{2}\left(x, Q^{2}\right)-y^{2} F_{L}\left(x, Q^{2}\right)\right] \\
& y=\frac{p \cdot q}{p \cdot k}=Q^{2} /(s x) \quad \text { inelasticity }
\end{aligned}
$$

Structure functions encode all the information about the proton(hadron) structure
$F_{T}\left(x, Q^{2}\right)=F_{2}\left(x, Q^{2}\right)-F_{L}\left(x, Q^{2}\right) \quad$ transversely polarized photons
$F_{L}\left(x, Q^{2}\right)$
longitudinally polarized photons
Often experiments give reduced cross section

$$
Y_{+}=1+(1-y)^{2}
$$

$$
\sigma_{r, N C}=\frac{d^{2} \sigma_{N C}}{d x d Q^{2}} \frac{Q^{4} x}{2 \pi \alpha_{\mathrm{em}} Y_{+}}=F_{2}-\frac{y^{2}}{Y_{+}} F_{L}
$$

Dominated by the F_{2} structure function except for large y

Deep Inelastic Scattering at large Q^{2}

- Lepton undergoes wide angle scattering at high Q^{2}
- Over short distance scale the struck parton interaction with the rest of target can be neglected
- Incoming parton can be approximately treated as free particle

- Single struck quark dominates since other partons
are separated from it by hadronic scale $\sim 1 \mathrm{fm} \gg \frac{1}{\mathrm{Q}}$

Collinear factorization

Schematic picture of

collinear factorization in DIS

$F_{2, L}\left(x, Q^{2}\right)=x \sum_{q} e_{q}^{2} \sum_{j} \int_{x}^{1} \frac{d z}{z} C_{2, L}^{j}\left(x / z, Q^{2} / \mu^{2}, \alpha_{s}\right) f_{j}\left(z, \mu^{2}\right)$
$C_{2, L}^{j}\left(x / z, Q^{2} / \mu^{2}, \alpha_{s}\right)$ Coefficient functions: calculable order by order in perturbation theory
$f_{j}\left(z, \mu^{2}\right)$
Parton densities: non-perturbative distributions in longitudinal momentum fractions z at a given scale μ^{2}

Radiation in QCD

Parton model

Radiation in QCD

Parton model

QCD radiation

$$
(1-\alpha) p_{z}
$$

Radiation in QCD

Radiation in QCD

Pair production of sea quarks

Radiation in QCD

Parton model

$$
(1-\alpha) p_{z}
$$

Gluon splitting

Radiation in QCD

$$
(1-\alpha) p_{z}
$$

Pair production of sea quarks

Gluon splitting

Radiation in QCD

$$
(1-\alpha) p_{z}
$$

Radiation in QCD

More gluons

...and even more...

Radiation in QCD

More gluons

...and even more...

Radiation in QCD

More gluons

...and even more...

These emissions suppressed by powers of coupling constant but enhanced by large (kinematical) logarithms

Arbitrarily many gluon emissions

Collinear approach

$$
\gamma^{*} N \quad \text { as a template }
$$

Focusing on gluon emissions

Large parameter

$$
Q^{2} \rightarrow \infty \quad x \text { is fixed }
$$

Probing small distances

Strong ordering in transverse momenta
$Q^{2} \gg k_{1 \perp}^{2} \gg k_{2 \perp}^{2} \gg k_{3 \perp}^{2} \cdots \gg k_{n \perp}^{2}$

Resummation of large logarithms

$$
\int_{\mu_{0}^{2}}^{Q^{2}} \frac{d k_{1 \perp}^{2}}{k_{1 \perp}^{2}} g^{2} \int_{\mu_{0}^{2}}^{k_{1}^{2} \perp} \frac{d k_{2 \perp}^{2}}{k_{2 \perp}^{2}} g^{2} \int_{\mu_{0}^{2}}^{k_{2 \perp}^{2}} \frac{d k_{3 \perp}^{2}}{k_{3 \perp}^{2}} g^{2} \cdots \int_{\mu_{0}^{2}}^{k_{n-1 \perp}^{2}} \frac{d k_{n \perp}^{2}}{k_{n \perp}^{2}} g^{2} \simeq\left(g^{2} \log \frac{Q^{2}}{\mu_{0}^{2}}\right)^{n}
$$

DGLAP evolution

DGLAP evolution equations for parton densities

$$
\mu^{2} \frac{\partial}{\partial \mu^{2}}\binom{q_{i}\left(x, \mu^{2}\right)}{g\left(x, \mu^{2}\right)}=\sum_{j} \int_{x}^{1} \frac{d z}{z}\left(\begin{array}{cc}
P_{q_{i} q_{j}}\left(z, \alpha_{s}\right) & P_{q_{i} g}\left(z, \alpha_{s}\right) \\
P_{g q_{j}}\left(z, \alpha_{s}\right) & P_{g g}\left(z, \alpha_{s}\right)
\end{array}\right)\binom{q_{j}\left(\frac{x}{z}, \mu^{2}\right)}{g\left(\frac{z}{z}, \mu^{2}\right)}
$$

q_{j} : quark density, g : gluon density
Splitting functions calculated perturbatively

$$
\begin{gathered}
P_{a b}\left(z, \alpha_{s}\right) \equiv P_{b \rightarrow a}\left(z, \alpha_{s}\right)=\frac{\alpha_{s}}{2 \pi} P_{a b}^{(0)}(z)+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} P_{a b}^{(1)}(z)+\left(\frac{\alpha_{s}}{2 \pi}\right)^{3} P_{a b}^{(2)}(z)+\ldots \\
\text { NLO }
\end{gathered}
$$

Leading order splitting functions

$$
\begin{aligned}
P_{q q}^{(0)}(z) & =C_{F}\left[\frac{1+z^{2}}{(1-z)_{+}}+\frac{3}{2} \delta(1-z)\right] \\
P_{q g}^{(0)}(z) & =T_{R}\left[z^{2}+(1-z)^{2}\right] \\
P_{g q}^{(0)}(z) & =C_{F}\left[\frac{z^{2}+(1-z)^{2}}{z}\right] \\
P_{g g}^{(0)}(z) & =2 C_{A}\left[\frac{z}{(1-z)_{+}}+\frac{1-z}{z}+z(1-z)+\delta(1-z) \frac{11 C_{A}-4 n_{f} T_{R}}{6}\right]
\end{aligned}
$$

Successful description of HERA data

Reduced cross section at HERA

H1 and ZEUS

Combined measurement H1 and ZEUS
Function of Q^{2} for fixed x

Scaling violations

Scaling region : independent of Q^{2}

Excellent description using DGLAP
HERAPDF parton densities

- HERA NC e $e^{-} \mathbf{p} 0.4 \mathrm{fb}^{-1}$
- HERA NC $\mathrm{e}^{+} \mathbf{p} 0.5 \mathrm{fb}^{-1}$ $\sqrt{s}=318 \mathrm{GeV}$
\square Fixed Target HERAPDF2.0 $\mathrm{e}^{-} \mathrm{p}$ NNLO
HERAPDF2.0 $\mathrm{e}^{+} \mathrm{p}$ NNLO

DGLAP parton densities

S-matrix and Regge limit

Properties of S matrix:

- Lorentz invariance
- crossing
- unitarity
- analyticity
$\mathcal{A}(s, t)$
ex. 2 to 2 scattering

S-matrix and Regge limit

Properties of S matrix:

- Lorentz invariance
- crossing
- unitarity
- analyticity

$$
\mathcal{A}(s, t)
$$

ex. 2 to 2 scattering

Amplitude dominated by exchange of the Regge trajectory $\alpha(t)=\alpha(0)+\alpha^{\prime} t$

S-matrix and Regge limit

Properties of S matrix:

- Lorentz invariance
- crossing
\bullet unitarity
\bullet analvticitv
ex. 2 to 2 scattering
\bullet unitarity
\bullet analvticitv

$\mathcal{A}(s, t)$

$$
\mathcal{A}(s, t) \sim \tilde{\beta}(t) s^{\alpha(t)}
$$

exchange of the Regge trajectory $\alpha(t)=\alpha(0)+\alpha^{\prime} t$

S-matrix and Regge limit

Properties of S matrix:

- Lorentz invariance
- crossing
- unitarity
ex. 2 to 2 scattering

$$
\mathcal{A}(s, t)
$$

exchange of the Regge trajectory $\quad \alpha(t)=\alpha(0)+\alpha^{\prime} t$
From optical theorem $\sigma_{\text {tot }}=s^{-1} \operatorname{Im} \mathcal{A}(s, 0) \sim s^{\alpha(0)-1}$
Intercept $\alpha(0)$ of Regge trajectory determines the behavior of the cross section

Pomeron

Pomeron:

- Reggeon with intercept greater than unity.
- Corresponds to the exchange of the vacuum quantum numbers.
- Dominates the cross section at asymptotically high energies

Donnachie, Landshoff

Okun,Pomeranchuk; Foldy,Peierls

Soft Pomeron

$$
\alpha_{P}(t)=1.11+0.165 \mathrm{GeV}^{-2} t
$$

However, such soft pomeron power behavior is potentially in conflict with Froissart bound which stems from unitarity requirements:

$$
\sigma^{\mathrm{tot}}(s) \leq C \log ^{2}\left(s / s_{0}\right)
$$

Note: the exact value of the constant C is of crucial importance here.

Pomeron

Pomeron:

- Reggeon with intercept greater than unity.
- Corresponds to the exchange of the vacuum quantum numbers.
- Dominates the cross section at asymptotically high energies

Donnachie, Landshoff

Okun,Pomeranchuk; Foldy,Peierls

Soft Pomeron

$$
\begin{aligned}
& \alpha_{P}(t)=1.11+0.165 \mathrm{GeV}^{-2} t \\
& \sigma_{\mathrm{tot}} \sim s^{\alpha_{P}(0)-1}
\end{aligned}
$$

However, such soft pomeron power behavior is potentially in conflict with Froissart bound which stems from unitarity requirements:

$$
\sigma^{\mathrm{tot}}(s) \leq C \log ^{2}\left(s / s_{0}\right)
$$

Note: the exact value of the constant C is of crucial importance here.

Pomeron in QCD

What is a Pomeron in QCD?

High energy limit in perturbative QCD:

$$
s \gg|t| \quad \alpha_{s} \ll 1 \quad \alpha_{s} \log s / s_{0} \sim 1
$$

Low-Nussinov model:
2 gluon exchange

BFKL Pomeron
gluon ladder in the multi-Regge kinematics

Pomeron in QCD

What is a Pomeron in QCD?
High energy limit in perturbative QCD:

$$
s \gg|t| \quad \alpha_{s} \ll 1 \quad \alpha_{s} \log s / s_{0} \sim 1
$$

Low-Nussinov model:
2 gluon exchange

BFKL Pomeron
gluon ladder in the multi-Regge kinematics

Gluon emissions at small x

Large parameter

$$
s \rightarrow \infty
$$

$Q^{2} \quad$ fixed, perturbative
Light cone proton momentum

$$
p^{+}=p^{0}+p^{z} \quad k_{i}^{+}=x_{i} p^{+}
$$

Strong ordering in longitudinal momenta

$$
x \ll x_{1} \ll x_{2} \ll \cdots \ll x_{n}
$$

Perturbative coupling but large logarithm

$$
\bar{\alpha}_{s} \ll 1 \quad \ln \frac{1}{x} \simeq \ln \frac{s}{Q^{2}} \gg 1
$$

Large logarithms
Leading logarithmic resummation

$$
\frac{\alpha_{s} N_{c}}{\pi} \int_{x}^{1} \frac{d z}{z}=\frac{\alpha_{s} N_{c}}{\pi} \ln \frac{1}{x}=\bar{\alpha}_{s} \ln \frac{1}{x}
$$

$$
\left(\bar{\alpha}_{s} \ln \frac{1}{x}\right)^{n} \quad\left(\bar{\alpha}_{s} \ln \frac{s}{s_{0}}\right)^{n}
$$

BFKL evolution

Resummation performed by BFKL evolution equation
Balitsky-Fadin-Kuraev-Lipatov (BFKL)

$$
\frac{\partial f_{g}\left(x, k_{T}\right)}{\partial \ln 1 / x}=\int \frac{d^{2} k_{T}^{\prime}}{\pi k_{T}^{\prime 2}} \mathcal{K}\left(k_{T}, k_{T}^{\prime}\right) f_{g}\left(x, k_{T}^{\prime}\right)
$$

Branching kernel (perturbative expansion)

$$
\mathcal{K}=\bar{\alpha}_{s} \mathcal{K}^{L L x}+\bar{\alpha}_{s}^{2} \mathcal{K}^{N L L x}+\bar{\alpha}_{s}^{3} \mathcal{K}^{N N L L x}+\ldots
$$

Unintegrated, (transverse momentum dependent) gluon density
$f_{g}\left(x, k_{T}\right)$

$$
\frac{\partial f_{i}\left(x, Q^{2}\right)}{\partial \log \left(Q^{2}\right)}=\sum_{j} \int_{x}^{1} \frac{d z}{z} P_{j \rightarrow i}(z) f_{j}\left(\frac{x}{z}, Q^{2}\right)
$$

Solution to BFKL

$$
\frac{\partial f_{g}\left(x, k_{T}\right)}{\partial \ln 1 / x}=\int \frac{d^{2} k_{T}^{\prime}}{\pi k_{T}^{\prime 2}} \mathcal{K}\left(k_{T}, k_{T}^{\prime}\right) f_{g}\left(x, k_{T}^{\prime}\right)
$$

Mellin space: $\quad \tilde{g}(\omega)=\int_{0}^{1} \frac{d x}{x} x^{\omega} g(x) \quad \tilde{h}(\gamma)=\int_{0}^{\infty} \frac{d k_{T}^{2}}{k_{T}^{2}}\left(k_{T}^{2}\right)^{-\gamma} h\left(k_{T}^{2}\right)$
Mellin variables: $\quad \gamma \leftrightarrow \ln k_{T}^{2} \quad \omega \leftrightarrow \ln 1 / x$

$$
\begin{gathered}
\tilde{f}(\omega, \gamma)=\int_{0}^{1} \frac{d x}{x} x^{\omega} \int_{0}^{\infty} \frac{d k_{T}^{2}}{k_{T}^{2}}\left(k_{T}^{2}\right)^{-\gamma} f\left(x, k_{T}^{2}\right) \quad \overline{\alpha_{s}} \chi(\gamma)=\int \frac{d k_{T}^{\prime 2}}{k_{T}^{\prime 2}} \mathcal{K}\left(k_{T}, k_{T}^{\prime}\right)\left(\frac{k_{T}^{\prime 2}}{k_{T}^{2}}\right)^{\gamma} \\
\tilde{f}(\omega, \gamma)=\frac{\tilde{f}^{(0)}(\omega, \gamma)}{\omega-\bar{\alpha}_{s} \chi(\gamma)} \text { Inhomogenous term }
\end{gathered}
$$

Singularity determining the energy behavior

Solution to BFKL

LL kernel in Mellin space $\quad \gamma \leftrightarrow \ln \boldsymbol{k}^{2}$

$$
\psi(z)=\Gamma^{\prime}(z) / \Gamma(z)
$$

$$
\chi_{0}(\gamma)=2 \psi(1)-\psi(\gamma)-\psi(1-\gamma) \simeq \frac{1}{\gamma}+\frac{1}{1-\gamma}
$$

collinear \& anti-collinear poles

$$
\begin{gathered}
\frac{1}{\gamma} \longleftrightarrow k_{2 T}^{2} \gg k_{3 T}^{2} \gg \cdots \gg k_{n T}^{2} \\
\frac{1}{1-\gamma} \longleftrightarrow k_{2 T}^{2} \ll k_{3 T}^{2} \ll \cdots \ll k_{n T}^{2}
\end{gathered}
$$

Solution to BFKL

LL kernel in Mellin space $\quad \gamma \leftrightarrow \ln \boldsymbol{k}^{2}$

$$
\psi(z)=\Gamma^{\prime}(z) / \Gamma(z)
$$

$$
\chi_{0}(\gamma)=2 \psi(1)-\psi(\gamma)-\psi(1-\gamma) \simeq \frac{1}{\gamma}+\frac{1}{1-\gamma}
$$

collinear \& anti-collinear poles

Solution to the gluon density $\quad f_{g}\left(x, k_{T}\right) \sim x^{-\omega_{P}}$

$$
\begin{gathered}
\omega_{P}=\bar{\alpha}_{s} \chi(\gamma=1 / 2) \rightarrow 4 \ln 2 \bar{\alpha}_{s} \simeq 2.77 \bar{\alpha}_{s}=2.77 \frac{\alpha_{s} N_{c}}{\pi} \\
\sigma_{\gamma^{*} p}^{D I S} \sim s^{\omega_{P}}
\end{gathered}
$$

$\ln 1 / x$

DGLAP: evolution in $\ln Q^{2}$

BFKL evolution is sensitive to the non-perturbative region

Diffusion into infrared

Consider a process with two large scales (ex. $\gamma^{*} \gamma^{*}$ scattering) with $Q_{1}^{2} \sim Q_{2}^{2} \gg \Lambda_{Q C D}^{2}$ Large comparable scales to suppress DGLAP, large rapidity for BFKL evolution, keep perturbative

Random walk in transverse momenta

Diffusion of transverse momenta towards IR and UV.
For large energies momenta can diffuse to low scales even when starting from large scales.

Diffusion into infrared with running coupling in BFKL

Large non-perturbative effects for large energies.

NLL corrections to BFKL

NLL corrections to BFKL equation are large and negative
Main sources:

- running coupling (double poles)
- kinematical constraint (triple poles)
- DGLAP anomalous dimension (double poles)

LLx kernel in Mellin space

$$
\chi_{0}(\gamma)=2 \psi(1)-\psi(\gamma)-\psi(1-\gamma)
$$

NLLx kernel in Mellin space

$$
\begin{aligned}
\chi_{1}(\gamma)= & -\frac{b}{2}\left[\chi_{0}^{2}(\gamma)+\chi_{0}^{\prime}(\gamma)\right]-\frac{1}{4} \chi_{0}^{\prime \prime}(\gamma)-\frac{1}{4}\left(\frac{\pi}{\sin \pi \gamma}\right)^{2} \frac{\cos \pi \gamma}{3(1-2 \gamma)}\left(11+\frac{\gamma(1-\gamma)}{(1+2 \gamma)(3-2 \gamma)}\right) \\
& +\left(\frac{67}{36}-\frac{\pi^{2}}{12}\right) \chi_{0}(\gamma)+\frac{3}{2} \zeta(3)+\frac{\pi^{3}}{4 \sin \pi \gamma} \\
& -\sum_{n=0}^{\infty}(-1)^{n}\left[\frac{\psi(n+1+\gamma)-\psi(1)}{(n+\gamma)^{2}}+\frac{\psi(n+2-\gamma)-\psi(1)}{(n+1-\gamma)^{2}}\right]
\end{aligned}
$$

Collinear poles in NLL BFKL

$$
\chi_{1}^{\mathrm{coll}}(\gamma)=-\frac{1}{2 \gamma^{3}}-\frac{1}{2(1-\gamma)^{3}}+\frac{A_{1}(0)}{\gamma^{2}}+\frac{A_{1}(0)-b}{(1-\gamma)^{2}}
$$

double and triple poles of the NLL part

LO DGLAP anomalous dimension $\quad \gamma_{g g}^{(0)}(\omega)=\frac{\bar{\alpha}_{s}}{\omega}+\bar{\alpha}_{s} A_{1}(\omega) \quad A_{1}(\omega)=-\frac{11}{12}+\mathcal{O}(\omega)$

Difference of about 7\% at most

Origin of NLL corrections in BFKL

NLLx kernel in Mellin space

$$
\begin{aligned}
\chi_{1}(\gamma)= & -\frac{b}{2}\left[\chi_{0}^{2}(\gamma)+\chi_{0}^{\prime}(\gamma)\right]-\frac{1}{4} \chi_{0}^{\prime \prime}(\gamma)-\frac{1}{4}\left(\frac{\pi}{\sin \pi \gamma}\right) \\
& +\left(\frac{67}{36}-\frac{\pi^{2}}{12}\right) \chi_{0}(\gamma)+\frac{3}{2} \zeta(3)+\frac{\pi^{3}}{4 \sin \pi \gamma} \\
& -\sum_{n=0}^{\infty}(-1)^{n}\left[\frac{\psi(n+1+\gamma)-\psi(1)}{(n+\gamma)^{2}}+\frac{\psi(n+2-\gamma)-\psi(1)}{(n+1-\gamma)^{2}}\right]
\end{aligned}
$$

Running coupling can be resummed into LL kernel

$$
\begin{aligned}
& \text { DGLAP anomalous dimension } \\
& \qquad \begin{array}{l}
\gamma_{g g}(\omega)=\int_{0}^{1} d z P_{g g}(z) z^{-\omega} \\
\qquad P_{g g}(z)=\frac{\alpha_{s}}{2 \pi} P_{g g}^{(0)}+\ldots \\
P_{g g}^{(0)}(z)=2 C_{A}\left[\frac{z}{(1-z)_{+}}+\frac{1-z}{z}+z(1-z)+\delta(1-z) \frac{11 C_{A}-4 n_{f} T_{R}}{6}\right] \\
\gamma_{g g}^{(0)}(\omega)=\frac{\alpha_{s} C_{A}}{\pi}\left(\frac{1}{\omega}+A_{1}(\omega)\right)
\end{array} \quad A_{1}(0)=-\frac{11}{12}
\end{aligned}
$$

Triple poles: kinematical constraint and energy scales

$f_{g}\left(x, k_{T}\right)=f_{g}^{(0)}\left(k_{T}\right)+\int_{x}^{1} \frac{d z}{z} \int \frac{d^{2} k_{T}^{\prime 2}}{\pi k_{T}^{\prime 2}} \mathcal{K}\left(k_{T}, k_{T}^{\prime}\right) f_{g}\left(\frac{x}{z}, k_{T}^{\prime}\right)$
The integrals are unrestricted
However in Regge kinematics, virtualities of exchanged momenta dominated by transverse components

This leads to constraint:

$$
k_{T}^{\prime 2}<\frac{k_{T}^{2}}{z}
$$

(on the real emission kernel)

$$
f_{g}\left(x, k_{T}\right)=f_{g}^{(0)}\left(k_{T}\right)+\int_{x}^{1} \frac{d z}{z} \int \frac{d^{2} k_{T}^{2}}{\pi k_{T}^{\prime 2}} \Theta_{R}\left(k_{T}^{2} / z-k_{T}^{\prime 2}\right) \mathcal{K}\left(k_{T}, k_{T}^{\prime}\right) f_{g}\left(\frac{x}{z}, k_{T}^{\prime}\right)
$$

In the Mellin space: shift of poles

Kernel with kinematical constraint has shifted pole

$$
\chi(\gamma, \omega)=2 \psi(1)-\psi(\gamma)-\psi(1-\gamma+\omega)
$$

Expanding to first order in ω

$$
\chi(\gamma, \omega) \simeq \chi^{(0)}(\gamma)-\omega \psi^{\prime}(1-\gamma) \simeq \chi^{(0)}(\gamma)-\omega \frac{1}{(1-\gamma)^{2}}
$$

Using the solution at LL to eliminate ω

$$
\omega=\bar{\alpha}_{s} \chi^{(0)}(\gamma) \simeq \bar{\alpha}_{s}\left(\frac{1}{\gamma}+\frac{1}{1-\gamma}\right)
$$

Generate triple poles:

$$
-\bar{\alpha}_{s} \frac{1}{(1-\gamma)^{3}}
$$

Scale choices

This is related to the scale choice in BFKL. Consider a high energy process

$$
\sigma_{A B}\left(s ; Q, Q_{0}\right)=\int \frac{d \omega}{2 \pi i} \frac{d^{2} \boldsymbol{k}}{\boldsymbol{k}^{2}} \frac{d^{2} \boldsymbol{k}_{0}}{\boldsymbol{k}_{0}^{2}}\left(\frac{s}{Q Q_{0}}\right)^{\omega} h_{\omega}^{A}(Q, \boldsymbol{k}) \mathcal{G}_{\omega}\left(\boldsymbol{k}, \boldsymbol{k}_{0}\right) h_{\omega}^{B}\left(Q_{0}, \boldsymbol{k}_{0}\right)
$$

$\omega \mathcal{G}_{\omega}\left(\boldsymbol{k}, \boldsymbol{k}_{0}\right)=\delta^{2}\left(\boldsymbol{k}-\boldsymbol{k}_{0}\right)+\int \frac{d^{2} \boldsymbol{k}^{\prime}}{\pi} \mathcal{K}_{\omega}\left(\boldsymbol{k}, \boldsymbol{k}^{\prime}\right) \mathcal{G}_{\omega}\left(\boldsymbol{k}^{\prime}, \boldsymbol{k}_{0}\right)$
Gluon Green's function

Different possible scale choices:
symmetric (ex. two photons)
DIS type configuration

$$
\begin{array}{ll}
s_{0}=Q Q_{0} & Q \sim Q_{0} \\
s_{0}=Q^{2} & Q^{2} \gg Q_{0}^{2} \\
s_{0}=Q_{0}^{2} & Q^{2} \ll Q_{0}^{2}
\end{array}
$$

Triple poles: scale choice

Different scale choices matter beyond LLx
Need to put different kinematical constraints
Kernel will be different
asymmetric scale choice

$$
\begin{gathered}
\chi^{u}(\gamma, \omega)=2 \psi(1)-\psi(\gamma)-\psi(1-\gamma+\omega) \\
\chi^{l}(\gamma, \omega)=2 \psi(1)-\psi(\gamma+\omega)-\psi(1-\gamma)
\end{gathered}
$$

symmetric scale choice

$$
\chi^{s}(\gamma, \omega)=2 \psi(1)-\psi\left(\gamma+\frac{\omega}{2}\right)-\psi\left(1-\gamma+\frac{\omega}{2}\right)
$$

The shift resums towers of subleading terms to all orders

Shift of poles: triple poles

Expansion reproduces higher order poles (NLL):
symmetric scale choice

$$
\chi^{s}(\gamma, \omega) \simeq \chi^{(0)}(\gamma)-\frac{1}{2} \frac{\bar{\alpha}_{s}}{\gamma^{3}}-\frac{1}{2} \frac{\bar{\alpha}_{s}}{(1-\gamma)^{3}}
$$

The same poles (with the exact same coefficients are in QCD and $\mathrm{N}=4 \mathrm{sYM}$)
In $\mathrm{N}=4$ sYM NNLO result is available, can check if shifts reproduce the poles

$$
\chi^{(2)}(\gamma) \sim+\frac{1}{2} \frac{\bar{\alpha}_{s}^{2}}{\gamma^{5}}+\frac{1}{2} \frac{\bar{\alpha}_{s}^{2}}{(1-\gamma)^{5}}+\ldots
$$

Coincides with the result obtained by

Gromov,Levkovich-Masyluk,Sizov;Velizhanin; Caron-Huot, Herranen

Form of resummed kernel

CCSS resummation (RGI renormalization group improved small x evolution):

- Include kinematical constraint : leads to shifts of poles
- Include DGLAP splitting function and running coupling in the leading part
- Suitable subtractions to avoid double counting, guarantee momentum sum rule
- Motivation in Mellin space, final equation in the momentum space

$$
X(\gamma, \omega)=2 \psi(1)-\psi\left(\gamma+\frac{\omega}{2}\right)-\psi\left(1-\gamma+\frac{\omega}{2}\right)+\omega A_{g g}(\omega)\left(\frac{1}{\gamma+\frac{\omega}{2}}+\frac{1}{1-\gamma+\frac{\omega}{2}}\right)+\bar{\alpha}_{s} \tilde{\chi}_{1}(\gamma, \omega)
$$

$A_{g g}(\omega)$
$\tilde{\chi}_{1}$

Much more `phenomenology friendly' result

Can the gluon density rise forever ? How fast?

Can the gluon density rise forever ? How fast?

very large density of gluons

Can the gluon density rise forever ? How fast ?

very large density of gluons

Gluon density at high energies

Gluon density at high energies

- Gluon recombination need to be taken into account in addition to the radiation of gluons at small x.

Gluon density at high energies

- Gluon recombination need to be taken into account in addition to the radiation of gluons at small x.
- On a more fundamental level it is related to the requirement of the unitarity of the strong interactions.

Gluon density at high energies

- Gluon recombination need to be taken into account in addition to the radiation of gluons at small x.
- On a more fundamental level it is related to the requirement of the unitarity of the strong interactions.
- Different approaches:

Gluon density at high energies

- Gluon recombination need to be taken into account in addition to the radiation of gluons at small x.
- On a more fundamental level it is related to the requirement of the unitarity of the strong interactions.
- Different approaches:
- Dipole splitting, evolution and multiple scattering.(Mueller,Kovchegov)

Gluon density at high energies

- Gluon recombination need to be taken into account in addition to the radiation of gluons at small x.
- On a more fundamental level it is related to the requirement of the unitarity of the strong interactions.
- Different approaches:
- Dipole splitting, evolution and multiple scattering.(Mueller,Kovchegov)
- Operator product expansion for high energy scattering.(Balitsky)

Gluon density at high energies

- Gluon recombination need to be taken into account in addition to the radiation of gluons at small x.
- On a more fundamental level it is related to the requirement of the unitarity of the strong interactions.
- Different approaches:
- Dipole splitting, evolution and multiple scattering.(Mueller,Kovchegov)
- Operator product expansion for high energy scattering.(Balitsky)
- Effective theory with renormalization group equation for the hadron wave function: Color Glass Condensate (CGC) (McLerran, Venugopalan,Kovner,Leonidov,Iancu,Jalilian-Marian,Weigert...).

Gluon density at high energies

- Gluon recombination need to be taken into account in addition to the radiation of gluons at small x.
- On a more fundamental level it is related to the requirement of the unitarity of the strong interactions.
- Different approaches:
- Dipole splitting, evolution and multiple scattering.(Mueller,Kovchegov)
- Operator product expansion for high energy scattering.(Balitsky)
- Effective theory with renormalization group equation for the hadron wave function: Color Glass Condensate (CGC) (McLerran, Venugopalan,Kovner,Leonidov,Iancu,Jalilian-Marian,Weigert...).
- These approaches have a common limit: Balitsky-Kovchegov (BK) equation.

Gluon density at high energies

- Gluon recombination need to be taken into account in addition to the radiation of gluons at small x.
- On a more fundamental level it is related to the requirement of the unitarity of the strong interactions.
- Different approaches:
- Dipole splitting, evolution and multiple scattering.(Mueller,Kovchegov)
- Operator product expansion for high energy scattering.(Balitsky)
- Effective theory with renormalization group equation for the hadron wave function: Color Glass Condensate (CGC) (McLerran, Venugopalan,Kovner,Leonidov,Iancu,Jalilian-Marian,Weigert...).
- These approaches have a common limit: Balitsky-Kovchegov (BK) equation.
- Both small x and large A (nuclear effects) can be addressed in this formalism.

Towards the non-linear equation

Towards the non-linear equation

Radiation of gluons: Bremsstrahlung

Towards the non-linear equation

Fast nucleus

Many charges (sources)

Recombination vs multiple scattering

Now the nucleus is at rest. The photon develops a small x wave function in terms of many quark-antiquark dipoles

Multiple scatterings of different components of the small x photon wave function on the nucleus.

Multiple scattering in rest frame of the nucleus is viewed as recombination of gluons in the frame in which the nucleus moves very fast.

Gluon density at high energies

Evolution equation for the dipole-hadron(nucleus) scattering amplitude:

$$
\begin{gathered}
\frac{d N\left(\mathbf{b}_{01}, \mathbf{x}_{01}, Y\right)}{d Y}=\bar{\alpha}_{s} \int \frac{d^{2} \mathbf{x}_{2} \mathbf{x}_{01}^{2}}{\mathbf{x}_{20}^{2} \mathbf{x}_{12}^{2}}\left[N\left(\mathbf{b}_{01}+\frac{\mathbf{x}_{12}}{2}, \mathbf{x}_{20}, Y\right)+N\left(\mathbf{b}_{01}-\frac{\mathbf{x}_{20}}{2}, \mathbf{x}_{12}, Y\right)\right. \\
\left.\quad-N\left(\mathbf{b}_{01}, \mathbf{x}_{01}, Y\right)-N\left(\mathbf{b}_{01}+\frac{\mathbf{x}_{12}}{2}, \mathbf{x}_{20}, Y\right) N\left(\mathbf{b}_{01}-\frac{\mathbf{x}_{20}}{2}, \mathbf{x}_{12}, Y\right)\right]
\end{gathered}
$$

Dipole amplitude is related to the unintegrated gluon density
(impact parameter neglected) $\quad N(b, r, Y=\ln 1 / x) \longleftrightarrow f\left(x, k_{T}\right) \quad r \leftrightarrow \frac{1}{k_{T}}$

$$
\frac{\partial f_{g}\left(x, k_{T}\right)}{\partial \ln 1 / x}=\int \frac{d^{2} k_{T}^{\prime}}{\pi k_{T}^{\prime 2}} \mathcal{K}\left(k_{T}, k_{T}^{\prime}\right) f_{g}\left(x, k_{T}^{\prime}\right)-\frac{\alpha_{s} N_{c}}{\pi}\left(f_{g}\left(x, k_{T}\right)\right)^{2}
$$

Linear term is the BFKL evolution

Gluon density at high energies

Evolution equation for the dipole-hadron(nucleus) scattering amplitude:

$$
\begin{gathered}
\frac{d N\left(\mathbf{b}_{01}, \mathbf{x}_{01}, Y\right)}{d Y}=\bar{\alpha}_{s} \int \frac{d^{2} \mathbf{x}_{2} \mathbf{x}_{01}^{2}}{\mathbf{x}_{20}^{2} \mathbf{x}_{12}^{2}}\left[N\left(\mathbf{b}_{01}+\frac{\mathbf{x}_{12}}{2}, \mathbf{x}_{20}, Y\right)+N\left(\mathbf{b}_{01}-\frac{\mathbf{x}_{20}}{2}, \mathbf{x}_{12}, Y\right)\right. \\
\left.\quad-N\left(\mathbf{b}_{01}, \mathbf{x}_{01}, Y\right)-N\left(\mathbf{b}_{01}+\frac{\mathbf{x}_{12}}{2}, \mathbf{x}_{20}, Y\right) N\left(\mathbf{b}_{01}-\frac{\mathbf{x}_{20}}{2}, \mathbf{x}_{12}, Y\right)\right]
\end{gathered}
$$

Dipole amplitude is related to $\begin{aligned} & \text { the unintegrated gluon density } \\ & \text { (impact parameter neglected) }\end{aligned}$$N(b, r, Y=\ln 1 / x) \longleftrightarrow f\left(x, k_{T}\right) \quad r \leftrightarrow \frac{1}{k_{T}}$

$$
\frac{\partial f_{g}\left(x, k_{T}\right)}{\partial \ln 1 / x}=\int \frac{d^{2} k_{T}^{\prime}}{\pi k_{T}^{\prime 2}} \mathcal{K}\left(k_{T}, k_{T}^{\prime}\right) f_{g}\left(x, k_{T}^{\prime}\right)-\frac{\alpha_{s} N_{c}}{\pi}\left(f_{g}\left(x, k_{T}\right)\right)^{2}
$$

Linear term is the BFKL evolution
I.Balitsky, Y.Kovchegov; J.Jalilian-Marian, E.Iancu,L.McLerran,H.Weigert, Leonidov

Gluon density at high energies

Nonlinear evolution equation for dipole-hadron(nucleus) scattering amplitude

$$
\begin{gathered}
\frac{d N\left(\mathbf{b}_{01}, \mathbf{x}_{01}, Y\right)}{d Y}=\bar{\alpha}_{s} \int \frac{d^{2} \mathbf{x}_{2} \mathbf{x}_{01}^{2}}{\mathbf{x}_{20}^{2} \mathbf{x}_{12}^{2}}\left[N\left(\mathbf{b}_{01}+\frac{\mathbf{x}_{12}}{2}, \mathbf{x}_{20}, Y\right)+N\left(\mathbf{b}_{01}-\frac{\mathbf{x}_{20}}{2}, \mathbf{x}_{12}, Y\right)\right. \\
\left.\quad-N\left(\mathbf{b}_{01}, \mathbf{x}_{01}, Y\right)-N\left(\mathbf{b}_{01}+\frac{\mathbf{x}_{12}}{2}, \mathbf{x}_{20}, Y\right) N\left(\mathbf{b}_{01}-\frac{\mathbf{x}_{20}}{2}, \mathbf{x}_{12}, Y\right)\right]
\end{gathered}
$$

Gluon density at high energies

Nonlinear evolution equation for dipole-hadron(nucleus) scattering amplitude

$$
\begin{gathered}
\frac{d N\left(\mathbf{b}_{01}, \mathbf{x}_{01}, Y\right)}{d Y}=\bar{\alpha}_{s} \int \frac{d^{2} \mathbf{x}_{2} \mathbf{x}_{01}^{2}}{\mathbf{x}_{20}^{2} \mathbf{x}_{12}^{2}}\left[N\left(\mathbf{b}_{01}+\frac{\mathbf{x}_{12}}{2}, \mathbf{x}_{20}, Y\right)+N\left(\mathbf{b}_{01}-\frac{\mathbf{x}_{20}}{2}, \mathbf{x}_{12}, Y\right)\right. \\
\left.\quad-N\left(\mathbf{b}_{01}, \mathbf{x}_{01}, Y\right)-N\left(\mathbf{b}_{01}+\frac{\mathbf{x}_{12}}{2}, \mathbf{x}_{20}, Y\right) N\left(\mathbf{b}_{01}-\frac{\mathbf{x}_{20}}{2}, \mathbf{x}_{12}, Y\right)\right]
\end{gathered}
$$

Linear term: gluon splitting (governed by BFKL), increase of the density

Gluon density at high energies

Nonlinear evolution equation for dipole-hadron(nucleus) scattering amplitude

$$
\begin{gathered}
\frac{d N\left(\mathbf{b}_{01}, \mathbf{x}_{01}, Y\right)}{d Y}=\bar{\alpha}_{s} \int \frac{d^{2} \mathbf{x}_{2} \mathbf{x}_{01}^{2}}{\mathbf{x}_{20}^{2} \mathbf{x}_{12}^{2}}\left[N\left(\mathbf{b}_{01}+\frac{\mathbf{x}_{12}}{2}, \mathbf{x}_{20}, Y\right)+N\left(\mathbf{b}_{01}-\frac{\mathbf{x}_{20}}{2}, \mathbf{x}_{12}, Y\right)\right. \\
\left.\quad-N\left(\mathbf{b}_{01}, \mathbf{x}_{01}, Y\right)-N\left(\mathbf{b}_{01}+\frac{\mathbf{x}_{12}}{2}, \mathbf{x}_{20}, Y\right) N\left(\mathbf{b}_{01}-\frac{\mathbf{x}_{20}}{2}, \mathbf{x}_{12}, Y\right)\right]
\end{gathered}
$$

Linear term: gluon splitting (governed by BFKL), increase of the density

Nonlinear term: gluon merging, slow down the growth of the density with the energy

Gluon density at high energies

Nonlinear evolution equation for dipole-hadron(nucleus) scattering amplitude

$$
\begin{gathered}
\frac{d N\left(\mathbf{b}_{01}, \mathbf{x}_{01}, Y\right)}{d Y}=\bar{\alpha}_{s} \int \frac{d^{2} \mathbf{x}_{2} \mathbf{x}_{01}^{2}}{\mathbf{x}_{20}^{2} \mathbf{x}_{12}^{2}}\left[N\left(\mathbf{b}_{01}+\frac{\mathbf{x}_{12}}{2}, \mathbf{x}_{20}, Y\right)+N\left(\mathbf{b}_{01}-\frac{\mathbf{x}_{20}}{2}, \mathbf{x}_{12}, Y\right)\right. \\
\left.\quad-N\left(\mathbf{b}_{01}, \mathbf{x}_{01}, Y\right)-N\left(\mathbf{b}_{01}+\frac{\mathbf{x}_{12}}{2}, \mathbf{x}_{20}, Y\right) N\left(\mathbf{b}_{01}-\frac{\mathbf{x}_{20}}{2}, \mathbf{x}_{12}, Y\right)\right]
\end{gathered}
$$

Linear term: gluon splitting (governed by BFKL), increase of the density

Nonlinear term: gluon merging, slow down the growth of the density with the energy

Equilibrium: nonlinear term compensates the linear term.

Gluon density at high energies

Nonlinear evolution equation for dipole-hadron(nucleus) scattering amplitude

$$
\begin{gathered}
\frac{d N\left(\mathbf{b}_{01}, \mathbf{x}_{01}, Y\right)}{d Y}=\bar{\alpha}_{s} \int \frac{d^{2} \mathbf{x}_{2} \mathbf{x}_{01}^{2}}{\mathbf{x}_{20}^{2} \mathbf{x}_{12}^{2}}\left[N\left(\mathbf{b}_{01}+\frac{\mathbf{x}_{12}}{2}, \mathbf{x}_{20}, Y\right)+N\left(\mathbf{b}_{01}-\frac{\mathbf{x}_{20}}{2}, \mathbf{x}_{12}, Y\right)\right. \\
\left.-N\left(\mathbf{b}_{01}, \mathbf{x}_{01}, Y\right)-N\left(\mathbf{b}_{01}+\frac{\mathbf{x}_{12}}{2}, \mathbf{x}_{20}, Y\right) N\left(\mathbf{b}_{01}-\frac{\mathbf{x}_{20}}{2}, \mathbf{x}_{12}, Y\right)\right]
\end{gathered}
$$

Linear term: gluon splitting (governed by BFKL), increase of the density

Nonlinear term: gluon merging, slow down the growth of the density with the energy

Equilibrium: nonlinear term compensates the linear term.

Gluon density saturates: parton saturation

Saturation scale

Dynamically generated saturation scale

Regulates the diffusion into infrared

Saturation scale

Dynamically generated saturation scale

Regulates the diffusion

$$
\frac{A \times x g\left(x, Q_{s}^{2}\right)}{\pi A^{2 / 3}} \times \frac{\alpha_{s}\left(Q_{s}^{2}\right)}{Q_{s}^{2}} \sim 1 \quad Q_{s}^{2} \sim A^{1 / 3} Q_{0}^{2}\left(\frac{1}{x}\right)^{\lambda}
$$ into infrared

Saturation scale: nuclear enhancement

Dynamically generated saturation scale

For a nucleus there is an enhancement factor related to the nuclear size. The dense region is approached either by selecting larger nucleus and probing smaller impact parameters or by decreasing value of x .

Can search for saturation either:
\Rightarrow decreasing x
\Rightarrow DIS on nuclei
\Rightarrow combination of both
$\xrightarrow{\ln A}$

Saturation scale: nuclear enhancement

Dynamically generated saturation scale

$$
\frac{A \times x g\left(x, Q_{s}^{2}\right)}{\pi A^{2 / 3}} \times \frac{\alpha_{s}\left(Q_{s}^{2}\right)}{Q_{s}^{2}} \sim 1 \quad Q_{s}^{2} \sim A^{1 / 3} Q_{0}^{2}\left(\frac{1}{x}\right)^{\lambda}
$$

For a nucleus there is an enhancement factor related to the nuclear size. The dense region is approached either by selecting larger nucleus and probing smaller impact parameters or by decreasing value of x .

Can search for saturation either:
\Rightarrow decreasing x
\Rightarrow DIS on nuclei
\Rightarrow combination of both
$\xrightarrow{\ln A}$

Solution to the BK equation (no impact parameter dependence)

Solution to the BK equation (no impact parameter dependence)

Solution to the BK equation (no impact parameter dependence)

Solution to the BK equation (no impact parameter dependence)

Bonus: impact parameter dependence and small x

Impact parameter dependence

Usual approximation:

$$
N(Y ; r, b) \rightarrow N(Y ; r)
$$

- The target has infinite size.
- Local approximation suggests that the system becomes more perturbative as the energy grows. - But this cannot be true everywhere (IR in QCD)

Impact parameter dependence

Usual approximation:

$$
N(Y ; r, b) \rightarrow N(Y ; r)
$$

- The target has infinite size.
- Local approximation suggests that the system becomes more perturbative as the energy grows. - But this cannot be true everywhere (IR in QCD) Impact parameter profile

Impact parameter dependence

Usual approximation:

$$
N(Y ; r, b) \rightarrow N(Y ; r)
$$

- The target has infinite size.
- Local approximation suggests that the system becomes more perturbative as the energy grows. - But this cannot be true everywhere (IR in QCD) Impact parameter profile

Impact parameter representation

Why do we care about impact parameter?

Impact parameter profile can provide the information how close the amplitudes are to the unitarity limit. Important to address the issue of correlations and in the double parton scattering context.

Impact parameter representation for total, elastic and inelastic

$$
\begin{aligned}
\sigma_{t o t}(s) & =2 \int d^{2} \mathbf{b} \operatorname{Re} \Gamma(s, b) \\
\sigma_{e l}(s) & =\int d^{2} \mathbf{b}|\Gamma(s, b)|^{2}
\end{aligned}
$$

$$
\sigma_{\text {inel }}(s)=\int d^{2} \mathbf{b}\left(2 \operatorname{Re} \Gamma(s, b)-|\Gamma(s, b)|^{2}\right)
$$

$$
\Gamma(s, b)=\frac{1}{2 i s(2 \pi)^{2}} \int d^{2} \mathbf{q} e^{i \mathbf{q} \cdot \mathbf{b}} A(s, t)
$$

Unitarity limit:

$$
\Gamma(s, b) \leq 1
$$

Impact parameter amplitude provides information about the unitarity limit.

Gribov diffusion in the parton model

Emission of particles, with some transverse momenta
Gribov
leads to the diffusion in impact parameter space. Rapidity η plays a role of ‘time’

Gribov diffusion in the parton model

Emission of particles, with some transverse momenta

Gribov
leads to the diffusion in impact parameter space. Rapidity η plays a role of ‘time’

Assumption:
each emission leads to the change of impact parameter of the order of some scale

$$
b \sim \frac{1}{\mu}
$$

Gribov diffusion in the parton model

Emission of particles, with some transverse momenta

Gribov
leads to the diffusion in impact parameter space. Rapidity η plays a role of ‘time’

Assumption:
each emission leads to the change of impact parameter of the order of some scale

$$
b \sim \frac{1}{\mu}
$$

$$
\left\langle(\Delta b)^{2}\right\rangle=c\left(\eta_{1}-\eta_{n}\right)
$$

Gribov diffusion in the parton model

Emission of particles, with some transverse momenta

Gribov
leads to the diffusion in impact parameter space. Rapidity η plays a role of ‘time’

Assumption:

each emission leads to the change of impact parameter of the order of some scale

$$
b \sim \frac{1}{\mu}
$$

Spatial distribution of partons

$$
\left\langle(\Delta b)^{2}\right\rangle=c\left(\eta_{1}-\eta_{n}\right)
$$

$$
\phi(b, \eta) \sim \frac{1}{c\left(\eta_{1}-\eta_{n}\right)} \exp \left(-\frac{b^{2}}{c\left(\eta_{1}-\eta_{n}\right)}\right)
$$

Impact parameter dependence in BK equation

Solution to the BK equation with impact parameter dependence
Initial condition $\quad N^{(0)}=1-\exp \left(-c_{r} r^{2} \exp \left(-c_{b} b^{2}\right)\right)$
initial profile in impact
parameter
Golec-Biernat,AS
Without impact parameter

Impact parameter dependence in BK equation

Solution to the BK equation with impact parameter dependence
Initial condition $\quad N^{(0)}=1-\exp \left(-c_{r} r^{2} \exp \left(-c_{b} b^{2}\right)\right)$
initial profile in impact
parameter
Golec-Biernat,AS
Without impact parameter

With impact parameter

Impact parameter dependence in BK equation

Solution to the BK equation with impact parameter dependence
Initial condition

$$
N^{(0)}=1-\exp \left(-c_{r} r^{2} \exp \left(-c_{b} b^{2}\right)\right) \quad \begin{gathered}
\text { initial profile in impact } \\
\text { parameter }
\end{gathered}
$$

Golec-Biernat,AS
Without impact parameter

When dipole is larger than the target it can miss it.
At LL it is a manifestation of conformal invariance.

Impact parameter profile of scattering amplitude

Kovner,Wiedemann

It was argued that the nonlinear equation leads to saturation but there will be long
Coulomb tails due to the massless gluons.

- Saturation for small impact parameters
- No saturation for large impact parameters (system is still dilute)
- Initial impact parameter profile is not preserved
- Power tail in impact parameter is generated

Perturbative LL QCD gives leads to the power tails: lack of confinement, conformal invariance

