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Outline

Lecture 1

* DIS paradigm: collinear factorization and DGLAP evolution
* Why small x ? A bit of Pomeron history

* BFKL evolution at small x

* NLL BFKL and the problems with convergence

* Collinear resummation at small x

* Parton saturation

* Nonlinear evolution equation. Saturation scale

* Impact parameter dependence (*)
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Outline

Lecture 2

* Is BFKL needed ? DGLAP success
* Hints of small x physics in the structure function data
» Two-scales processes
* Forward jet in DIS
o y*y* at LEP
* Mueller-Navelet jets at LHC
* Angular correlations of dihadrons/dijets

e Diffraction at small x and nuclei
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DGLAP vs BFKL vs nonlinear evolution
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Saturation scale: divides dilute and dense regimes. Enhanced in nuclei
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Opportunities at the EIC to test saturation using nuclei
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Capabilities of EIC

Beams with different A: from light nuclei to the heavy nuclei

Polarized electron and nucleon beams. Possibility of polarized light ions.

Variable center of mass energies 20 -140 GeV

High luminosity 10°* — 10**cm=2s~!

EIC kinematics compared with eA

DIS experiments

104

Measurements with A = 56 (Fe):

e eA/uA DIS (E-139, E-665, EMC, NMC)
JLAB-12

= vADIS (CCFR, CDHSW, CHORUS, NuTeV)
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EIC ep kinematics compared with polarized
DIS and pp experiments
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= Current polarized DIS data:
o CERN A DESY ¢ JLab-6 o0 SLAC
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current polarized BNL-RHIC pp data:
e PHENIX 7 4 STAR 1-jet v W bosons
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What can we learn at EIC at small x and in nuclei?

* Nuclear structure functions, precision extraction of nuclear PDFs, testing the
limits of collinear factorization in nuclei. Initial conditions for hot QCD.

 Explore the onset of saturation in eA, DGLAP vs non-linear evolution, x,A, and Q
dependence. Precise measurement of Fr, needed (variable energies)

e Extraction of diffractive nuclear PDFs possible for the first time, potential for
FLD. Prospects for measuring Reggeon. Diffractive to inclusive ratios needed to
distinguish between the different scenarios (saturation vs leading twist
shadowing).

e Exclusive diffraction of vector mesons, excellent process to map spatial
distribution and test saturation. Experimental challenges.
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Successful description of HERA data

Reduced cross section at HERA H1 and ZEUS
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Small x resummation and the HERA data

Ball,Bertoni,Bonvini,Marzani,Rojo,Rottoli inematic coverage move the cutoff to

105_
= include more data
e Perform fits to data with the cut on 9 IR
small x/small Q2 region o
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Improved description of F;

Ball,Bertoni,Bonvini,Marzani,Rojo,Rottoli
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Resummation improves the description of longitudinal structure function at small x

Small x physics: from HERA, through LHC to EIC, CFNS-CTEQ School, Stony Brook, June 15-16, 2023 9



Small x resummation: future DIS facilities

Ball, Bertone,Bonvini,
Marzani,Rojo,Rottoli

e Perform extrapolation of the calculations to the higher

energy range (smaller x).
e Simulations with and without the resummation
e Compared with the pseudodata
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e Structure function in the LHeC/FCC-eh range can discriminate between different scenarios

CERN DIS proposals

LHeC: ep at\/s = 1.3 TeV, eA aty/s = 812GeV

FCC-eh: ep at \/E = 3.5TeV, €A at \/E =2.2TeV
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* Longitudinal structure function particularly sensitive to the resummation vs fixed order

e EIC: lower energy, so likely in preasymptotic regime, but can measure longitudinal structure

function with precision, thanks to high luminosity and varying energies
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Testing saturation through inclusive structure functions at EIC

Study differences in evolution between linear DGLAP evolution and nonlinear evolution with saturation
Matching of both approaches in the region where saturation effects expected to be small

Quantify differences away from the matching region: differences in evolution dynamics
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Heavy nucleus: difference between DGLAP and nonlinear are few % for F' and up to 20% for F;.

Longitudinal structure function can provide good sensitivity at EIC
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Deep Inelastic Scattering: structure functions

Inclusive DIS cross section for [p — [X (I charged lepton, Q% < M3, s > M)

I = o (1 4 (1 ) Bo(e, Q) — P Fi (2. Q7))

drd@* Q' ~_

structure functions
pP-q

_ P9 _ . L
Yy = bk Q°/(sx) inelasticity

Structure functions encode all the information about the proton(hadron) structure

Fr(x, QQ) = Iy (x, QQ) — Fp(x, QQ) transversely polarized photons

Fr (x : QQ) longitudinally polarized photons
reduced cross section Y. =14 (1—y)
i _ d’onc  Q*z o y—QF
nNC CZCCCZQQ 27TOfemY_|_ : Y_|_ L

Measurement of F; requires varying energies s. Possible at EIC
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Two scale processes

Consider a process with two large scales (ex. y*y™* scattering, two jets,...) with le ~ Q22 > AzQCD
Large comparable scales to suppress DGLAP, large rapidity for BFKL evolution, keep perturbative

Random walk in transverse momenta

Y Q2

nonperturbative

(1 Vﬂj

transverse momentum
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Example of two scale processes

Forward jets in DIS y¥y*in eTe”
* et (py)
L
Quark box

S
3000666666@ hadrons
%0006666666“ Soft gluon radiation
q
q
36666666660“

k 3 » Forward jet

k kjet

Proton remnants

Mueller-Navelet in pp
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Forward jet/particle in DIS

Y
Quark box
i
a
3@0@6@6@6@6\
%@G@WWWG\ Soft gluon radiation
q
q
3@0@6@6@6@6\
k§ , Forward jet
k kjet

o

Proton remnants

To suppress DGLAP evolution need: 0? ~ kJZT

Another process: forward 7"

vV +p—ad+ X

Forward jet in DIS:
*

Y4+ p—Jet + X

p four-momentum of the proton
g four-momentum of the photon

q' light-like vector: ¢’ = g + xp

Forward jet requirement:
X

X j > or In— large
x .
J
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Forward jet at HERA
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Cross section increases steeply towards small x

Predictions obtained from DGLAP parton shower simulations fall below measurements
ARIADNE comes close to data (has unordered emissions, similar to BFKL)

DGLAP region E% < 02, predictions based on DGLAP come closer to the data

In the region, E% > Qz, measurements tend to be above predictions
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Forward 7z° in DIS
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e Identified particles like 7" allow for
access to low transverse momenta
and hence low x

e Calculations based on BFKL describe
data well

 Also calculations which include
resolved photon structure

* The latter one includes the
contributions from the partonic

component of the photon at low Q2

e Can be interpreted as part of the
BFKL framework
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Small x at e "¢~ collider: y*y* scattering into hadrons

e"(pr)e” (p2) — " (pl)e” (ph)X

e’ (py)
et (p1) /ﬁl * Anti-tagged or r?o-tag (none of lepto.ns
" (q1) observed): quasi-real photon scattering
2 2
Q2 ~ Q2 ~ 0
\ * Single-tagged (one lepton observed): DIS
\ hadrons like on a real photon Q22 > Q22 ~ 0
J e Double-tagged (both electrons observed):
high virtualities, virtual photon scattering
* 2 N2
e (pz) Y (q2) Q2’ Q2 > O
\&2 / e Tractable in pQCD, great process for
e (p2) BFKL searches if Q22 ~ Q22 > ()
Q% — —q% e Measured at LEP by L3 and OPAL
experiments
QQ 2
2 — —4s
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y*y* scattering into hadrons: contributions

Fixed order contributions to y*y* — X

a)

<€

Y

Gluonic exchanges

diagram of single gluon

Constant in energy: Born E g
<€

exchange

N
§ one-gluon
exchange

Y

\

",

$§§1vaﬂ*qq $§§1vaﬁ*qq

.,

§multigluon
exchange

Exchange of BFKL Pomeron.
Process enhanced by o, In s/,
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Resummation In y*y* scattering

Need to apply resummation to properly
describe this process

LO overestimates the data, NLO
underestimates the data

Gluon Green’s
function

Perform resummation of the gluon Green’s
function (evolution equation)

Perform resummation of the impact factors
(currently available to NLO)

gluon Green’s function
(from resummed BFKL)

o9(5,Q1.Q2) = 55 [ 5 ()f - (Q%)W2@<”<w,v>g<w,lv><1><’“><w,1v)

/ 27TQ1Q2 2T S0 21 62%/'

Cross section Resummed impact factors
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Results for y*y* cross section

L3: 0? = 16 GeV? OPAL: 0% = 17.9 GeV?
14| — collA . . . — LO Quark Box | 44k — collA I I I — LO Quark Box |
— collB o L3 — collB e OPAL
12} 1 12t
I zVnM [ zVnM
10:- -------- zVnB - 10:— -------- zVnB

Colferai, Li ,AS

Fixed order (quark box) decreasing with energy

Overall : resummation calculation consistent with the data (LL BFKL overestimates the
data, NLL underestimates)

Caveat: calculation is for ne = 3 light (massless) flavors, need to include charm with
mass effect
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Mueller-Navelet process in proton-proton collision

Two jets in hadronic collisions separated by large rapidity: p + p — 2jets(AY) + X

proton jet
K1, @51, 20
1 large — rapidity
2 | jetz (Kiz2, ¢72)
8 '
=
é 71
- - zero rapidit
l —— By pidity
L plane
jetr (ku1, 1) jet
large + rapidity
Kj2, @2, 72

Large rapidity difference: phase space for BFKL evolution

Can select jets with similar transverse momenta k%l ~ k%z , suppress DGLAP evolution

Can study azimuthal (de)correlations. Multiple emissions between jets will lead to decorrelation
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Quantifying azimuthal (de)correlations

Decompose the cross section into Fourier series in decorrelation angle: angle between

jets, minus 7w
do 1

dle dsz d|EJ1| d‘EJz |d§b«]1 dngz - (27T)2

Co + Z 2 cos(ng) Cn}
n=1

where ¢ = ¢p; — ¢, — m and the coeflicient of expansion are defined by

do
dy,dyy, d|ks,| dks,|dds,doy,

27 2T
Cn = /() d¢J1 /O d¢Jz COS[TL(¢J1 — ¢J2 _ T‘-)]

» Pourier coefficients C, are equal to the average cosines of the decorrelation angle p = ¢p; — ¢, —#

* Very sensitive to parton dynamics

e If two hard jets are in the final state, they will be approximately back-to-back in the azimuthal plane

e Due to parton radiation the angular distribution has a non-zero width determined by Fourier coeflicients

* In BFKL one expects increasing decorrelation with increasing rapidity interval due to the increased parton
emissions

e In DGLAP strong ordering implies that, their emission will not affect jet correlation as much and should
not depend on the rapidity
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Azimuthal decorrelations of Mueller-Navelet jets at LHC
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i | (@1 DATA 1% L ]
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0.9¢ === PYTHIA 8 4C 7 09 ] .
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E:ﬂ.-r - = i g gt -
0.8: LS hg . POWHEG+PYTHIA 8 Il 08_ L .‘.?._T'-T ) not seem to Change the
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Testing small x and saturation in (de)correlations of hadrons at EIC

Azimuthal (de)correlations of two hadrons (dijets) in DIS in eA: direct test of the unintegrated gluon
distribution

Instead of looking for two jets separated by large rapidity, look for two hadrons/dijets at small x

\ Two partons. Can look at the decorrelation

/ of jets or hadrons

d07*+A—>h1 +ho+X

C A — X 1 Lot
(Ag) ol TASTITX " dzpidznadAd

dO-’Y* +A—hi1+ho+X

dzhldzh2d2ph1Td2ph2T ~ F(xg7 QT) X H(qu le; k2T) & Dq(Zhl/Zq,plT) (09 Dq(th/Zq7p2T)
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Testing small x and saturation in (de)correlations of hadrons at EIC

Clear differences between the ep
and eA: suppression of the
correlation peak in eA due to
saturation effects (including the
Sudakov resummation)

Further observables: azimuthal
correlations of dihadrons/dijets in
diffraction, photon+jet/dijet. These
processes will allow to test various
CGC correlators
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Diffraction in DIS

Final state: elastically scattered
Y proton, or the system with the
same quantum numbers

X  Diffractive system with mass My

Rapidity gap

In order for the rapidity gap to exist it needs to be mediated by the colorless exchange

Diffraction: a reaction characterized by a rapidity gap in the final state
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Diffractive kinematics in DIS

Standard DIS variables:

electron-proton inelasticity
cms energy squared: p-q
2 Y= —71
s = (k+p) p-k
Bjorken x
photon-proton — q2
cms energy squared: r =
5 5 2p - q
We = (q + p) (minus) photon virtuality

Q2 _ _q2

Target is scattered elastically: Diffractive DIS variables: [Qj — 65 ]
elastic scattering
¢ Q2 + M)Q( —t momentum fraction of the
= TP — Pomeron w.r.t hadron
It can also dissociate into a Q*+ W=
state Y with the same quantum Q>

_ momentum fraction of parton
numbers, but still separated b= Q2+ M2 —t w.r.t Pomeron

from the rest of particles

t = (p — p/)2 4-momentum transfer squared
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Deep Inelastic Scattering : non-diffractive

lepton proton

Non-diffractive DIS event > < <

lepton proton

_J*
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Diffraction at HERA

Large Rapidity

S
SN

Gap ‘..........................m.mm.mim'.;u'u'ummm

P

10% events at HERA were of diffractive type
Large portion of the detector void of any particle activity: rapidity gap
Proton stays intact despite undergoing violent collision with a 50 TeV electron (in its

rest frame)
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Phase space (x,02) EIC-HERA in diffraction

EIC 3 scenarios - HERA

104 | B8, <175°

- H1-LRG

| ZEUS-LRG -

weenes - A

10° f 0, < 179"

B<1

0.005<y<0.96 VARSI B

X =g
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Diffraction in DIS

Why diffraction ?
* Dynamics of color singlet object (Pomeron). Relation

to confinement

 Sensitivity to gluon content, low x dynamics and
saturation

* Relation to shadowing

 Limits of factorization and universality of diffractive

PDFs

* Provides information about spatial distribution of the
gluons in the target

In nuclei, also possible incoherent
diffraction, when nucleus breaks up, but
rapidity gap still present

On protons, one can have diffractive
dissociation (proton breaks up but there
is rapidity gap)
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Diffractive cross section, structure functions

Diffractive cross section depends on 4 variables (§,3,Q2,t):

d*ocP 2T 2

Edpdgedi ~ gt Lt @H@ND

Vi =14 (1—y)

Reduced cross section depends on two structure functions:
(€ 8,Q% 1) = F)V(,8,Q° 1) - Y—+FD<‘“ (68,Q% 1)
Upon integration over t:

0
R0 = [ aresne Dimersions
— [UP<4)] — GeV ™2

O'D(3) Dimensionless
r
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Example: pseudodata for a2 in ep at EIC

Armesto, Newman, Slominski, Stasto

eo[z) Ep—1OOGeV Ee—10GeV .I.__1Ofb. 5Sys—5/o ep Ep—275GeV Ee—1SGeV .l.__10fb. 53y3—5A)
' t018 — 1 ! EZ018 — 1 s £s018 — 1 ! £E2018 — A
£=01 — 1
£2001 ——

§=0.001 —

: £-01 — § hrp— : L
- §=001 — 1 £§=0.01 — | 0.15 £=001 — T
0.15 - £=0.0032 — - £=0.0032 — | [ £=0001 — T

01 b T 5

: i : e
0.05 - 4//{1%__ /_/yi 0.05 i /ﬁ}
L 1 [} L 1 i
T Q2 = 3.2 GeV? /;: Q? = 5.6 GeV? I T Q2 =10 Gev? ]
- HHHHH——— - HHHH——— ' 0 H — A ——
° | £€=018 — T | E 018—: I | §|=0.18—:
: ool AR 0.15 B
0.15 1 N T 3 N\\,\\
S\ 1 [ ]
i & N\‘H\“\ 1\1\'\‘\\ 0.1
0.1 @9@ = + - X\'\n\.\
Q}ﬁo‘ \;_\;_*&\(;_ Ai\i\hg\\ | ._
0.05 | r‘% Shifted by 0, 003, 0.06, 0.08 respectively 0.05 | I shited by G, 0.05, 0.06, 0.09 respectvely ]
Q2 = 18 GeV?2 Q2 = 56 GeV2 [ Q2 = 56 GeV? : Q2 = 180 GeV2
0 Lol Lol Lo Lol L 0 Lol Lol Lo Ll Lo
0.001 0.01 0.1 0.001 0.01 0.1 1 0.001 0.01 0.1 0.001 0.01 0.1 1
B B B B
In total: In total:
482 points for 1.3 < Q2 < 1330 GeV? /92 points for 1.3 < Q2 < 4220 GeV?
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Possihilities for F(P© at EIC

O —

Why F£ is interesting? D(3) _ D) y? 7D(3)
r 2 o L
Yy

FP vanishes in the parton model
Gets non-vanishing contributions in QCD
As in inclusive case, particularly sensitive to the diffractive gluon density

Expected large higher twists, provides test of the non-linear, saturation phenomena

Experimentally challenging...

Measurement requires several beam energies

FP strongest when y — 1. Low electron energies
H1 measurement: 4 energies, E;,=920, 820, 575, 460 GeV, electron beam E.=27.6 GeV
Large errors, limited by statistics at HERA

Careful evaluation of systematics. Best precision 4%, with uncorrelated sources as low as 2%
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Simulated measurement of F 2@ vs 8 in bins of (€,02)

Uncorr. systematic error 1%, 5 MC samples to illustrate fluctuations

£ =0.01 £=0.1 £ =0.01 £E=0.1 € =0.01 £§=0.1
R | LR | LA IR | LR | T | or T ' '+' "'"" | orETr ' "'"- I R | AL | N ""'" R | AL | vt ""'.
. 1 1% o } 1% .1 1%
gep S H j I~ 8°f [~ 8%f 1=
< PITYHT 0 X X M
0 1 1 1 MR ETIT BT | — ......J—T FEPEETITY 0 N 0 ul u
[ 1 1S 1S [ 1S
o [ T 1 0 o [ »' (O] o [ 1 O
g2 h T Y\i 1o 8°[ la 827 T 1o
0 | W 1 0 1 o 1
| _ NI | | P NI
0 1 1 1 1 l+ 0 0 1 1 1 1 2
0.01 0.1 1 0.01 0.1 1 0.01 0.1 1 0.01 0.1 1
B B B B
17 energies 9 €nergies 5 energies

Armesto, Newman, Slominski, Stasto

Small differences between S-17 and S-9, small reduction to range and increase in uncertainties.
More pronounced reduction in range and higher uncertainties in S-5.

An extraction of FPy, possible with EIC-favored set of energy combinations
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fj,A”“’/(A fj,N”(3))

fj/A”(3)/(A fj/N”(3))

©Soo0000O0

Example : inclusive diffraction in eA DIS

Diffractive to inclusive ratio of cross sections sensitive probe to different models

Ratio in LT shadowing : suppression Ratio in saturation model: enhancement

1.4

| FGS10_H e
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Yellow Report
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Example : diffractive elastic vector meson production

Final state contains only vector meson,
scattered lepton and proton

Inclusive diffraction

J/{ vector meson: charm -anti charm system m = 3.09 GeV
Upsilon vector meson: bottom - anti bottom system m = 9.46 GeV
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Elastic vector meson production

P

\\f—/
t=(p—p)° <0
. momentum transfer at the proton
vertex

[ (Q% = 0.05 GeV?
- b)  135<W, <235GeV

0 025 05 075 1 .
t| [GeV”]

— ~F Exponential fit

dt )
t-dependence of the elastic cross section provides information about the
profile of the target
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Diffraction in hadronic physics: analogy with optics

Source: Wikipedia
Author: Epzcaw

Source: Wikipedia
Author: Wisky

Circular aperture Rectangular aperture

The diffraction pattern (far away from obstacle) is a Fourier transform of
the apertured field.
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Diffraction pattern

Gosling-Franklin Watson-Crick

Photo 51

chromosome

Source: Office of Biological and Environmental Research
of the U.S. Department of Energy Office of Science

Source: Wikipedia

Diffraction can provide very detailed information about the structure of an object.

The object cannot be destroyed in this process.
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Diffractive elastic VM production

Diffractive elastic vector meson production as a way to study nucleon structure

Measured in diffractive VM

2R
V

3 v

P
‘ oY) Proton charge size
S
Radius measured in diffractive Proton charge radius
scattering of vector mesons )
° R~ 0.84 =+ 0.87 fm

b~ 0.5+0.6fm

Experiments on elastic VM production suggest gluons are concentrated in
smaller regions than quarks
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Growth of the target size with energy

1.... a1

[ (Q% = 0.05 GeV?
- b)  135<W <235 GeV

[ (Q% = 0.05 GeV?
- €)  205<W, <305 GeV
L M M PR |

0 0.25 0.5

075

o 05 07 A,
t| [GeV"]

S ——
= | H1 (©@3-00s5cev
95:- a)
=
‘54; } *

3t

The slope growths with energy:

+—P—t
|

b(W) = by + 4o/ In(W,,,, /W)

50

2 P |
100

200 _
WYIO [GeV]
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Elastic vector meson production at EIC

Y'+p—=Jp+p Y'+p—=Jp+p

. 10% ¢ 103
Al E A
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L i 2
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o} L o) L
© 2 ©
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Id) F |® F
+ +
(0] [0)) L
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i v o v
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& 4
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z 2 <
0.5 |
1t
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0O 02 04 06 08 1 12 14 16 0O 02 04 06 08 1 12 14 16
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EIC, White paper

EIC: lower energy than HERA, different kinematics.
Very high statistics, high precision
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Profile function from elastic vector meson production
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Elastic vector meson production at EIC : eA

Nuclear target: Au
e+ Au — e+ Au—+ J/¢

Characteristic ‘dips’ in t-distribution

0.1 — Jny bNonSat From do/dt
S M Input
o 0.08— Woods-Saxon
a :
2 0.06
— L
~ B
@ 0.04 —
LL -
0.02 —
0 C 1 1

—
o
(67
o
(67
—
o
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do_(e +Au—e’ +Au’ + J/ljJ)/dt (nb/GeVZ)

EIC, White paper

fLdt =10 fb"1/A
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Coherent vs incoherent
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Coherent vs incoherent

Coherent
Nucleus stays intact

JIY e
5
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Coherent vs incoherent

Coherent
Nucleus stays intact

JI'Y e
&
Incoherent
Nucleus breaks up
JI'Y e
* T
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Coherent vs incoherent

N fLdt = 10 fb"1/A
10" 1<Q?<10 GeV?
- O X < 0.01
B .D IN(Edecay)l <4
3| = P(Edecay) > 1 GeV/c
10, dth=5%
- =
=
10?2 ot

do,(e +Au—¢e +Au’ + J/L|J)/dt (nb/GeVZ)

10 =
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Coherent:

Depends on the shape

of the source, average
distribution

Incoherent:

Provides information
about the fluctuations
or lumpiness of the
source
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Physics at small x and with nuclei at EIC

* Nuclear structure functions, precision extraction of nuclear PDFs, testing the
limits of collinear factorization in nuclei. Initial conditions for hot QCD.

 Explore the onset of saturation in eA, DGLAP vs non-linear evolution, x,A, and Q
dependence. Precise measurement of Fr, needed (variable energies)

e Extraction of diffractive nuclear PDFs possible for the first time, potential for
FLD. Prospects for measuring Reggeon. Diffractive to inclusive ratios needed to
distinguish between the different scenarios (saturation vs leading twist
shadowing).

e Exclusive diffraction of vector mesons, excellent process to map spatial
distribution and test saturation. Experimental challenges.
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