Measurement of the *t*-dependence of the beam asymmetry for the reaction $\vec{\gamma}p \rightarrow \eta p$

GLUE Florida International University, Miami, FL

Tolga Erbora On behalf of the GlueX Collaboration (presented to CFNS/CTEQ Summer School June 2023)

Motivations

- The GlueX experiment at Jefferson Lab is searching for hybrid mesons.
 - Hybrid meson: $q\bar{q}g$
 - Among those: Exotics: Quantum #s beyond simple quark model (e.g. $J^{PC} = 1^{-+}$)
 - Studying mass spectrum of hybrids with rel. to quantum #s
 - Several decay particles: $\rho, \eta, \omega, \pi, \dots$
- This work: study η production mechanisms

Meson Constituents

Hybrid Meson Constituents

Motivations

- η mesons (547 MeV, $J^{PC} = 0^{-+}$)
 - Produced @ GlueX energies via Meson, Reggeon exchanges •
- Mechanism: Photon beam asymmetry $\Sigma \in [-1,1]$
 - $\Sigma = 1$: natural parity exchange $P = (-1)^J (\rho, \omega; 1^{--})$
 - $\Sigma = -1$: unnatural parity exchange $P = (-1)^{J+1}$ (b, h: $1^{+-})$
- What is the ratio of $\Sigma_{n'}/\Sigma_{n}$?
 - If $\Sigma_{n'}/\Sigma_n > 1$, we see hidden strangeness exchange contributions
 - JPAC prediction limited to low momentum transfer

JPAC Model comparison of $\Sigma_{\eta'}/\Sigma_{\eta}$ (PLB 774, 362 (2017))

Channels Analyzed

 $\vec{\gamma}p \rightarrow \eta p$ Dominant η decay channels (PDG*): **1.** $\eta \rightarrow \gamma \gamma$ (42%) (Today's Talk) 2. $\eta \rightarrow \pi^+ \pi^- \pi^0$ (21%) (shown previously/in progress) 3. $\eta \to 3\pi^0$ (30%) 4. $\eta \rightarrow \pi^+ \pi^- \gamma$ (4%)

*P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

GLUE

- Advantages of the GlueX Detector at Jefferson Lab:
- Hermetic (full solid angle range accepted)
- High energy polarized photon beam (> 8 GeV)
- High Statistics for this analysis

Asymmetry Calculation

- . By definition, $\Sigma = \frac{\sigma_{\perp} \sigma_{\parallel}}{\sigma_{\perp} + \sigma_{\parallel}} = \frac{|\rho + \omega|^2 |b + h|^2}{|\rho + \omega|^2 + |b + h|^2}$
- Yield: $Y \propto N_{\gamma} N_t A(\phi) [\sigma_0 (1 + P_{\gamma} \Sigma cos(2\phi 2\phi_0))]$
- With 2 orthogonal choices of ϕ_0 , we can get:
- . Yield asymmetry $f(\phi) = \frac{Y_{\perp} F_R Y_{\parallel}}{Y_{\perp} + F_R Y_{\parallel}}$
 - . Where Flux Ratio $F_R = \frac{N_\perp}{N_{\parallel}}$, N integrated photon flux
- Beam asymmetry \sum is directly extracted via a fit! GLUE

$$= \frac{(P_{\parallel} + P_{\perp})\Sigma cos(2\phi - 2\phi_0)}{2 + (P_{\perp} - P_{\parallel})\Sigma cos(2\phi - 2\phi_0)}$$

Ref: Polarization vs Beam Energy, 2017

Linearly polarized photon beam can be oriented by a goniometer in Tagger Hall to four possible angles, with order 1 deg accuracy

Production

Polarization

Production Schematic

 $Y \propto N_{\gamma} N_{t} A(\phi) [\sigma_{0}(1 + P_{\gamma} \Sigma cos(2\phi - 2\phi_{0}))]$

Polarization angle has a "phase offset" ϕ_0

$\eta \rightarrow \gamma \gamma$ Yields - Low -texample $^{0.1 < -t < 0.2}_{50\% \text{ GlueX-I}}$

Correcting Beam Asymmetry Dilution Factor vs -t

Dilution Factor (B/(S+B)

$$\Sigma = \frac{\Sigma_{peak} - f\Sigma_{sideband}}{1 - f}$$

where dilution factor: $f = \frac{B}{S+B}$

- "Peak" 0.52-0.58 GeV range
- "Sideband" 0.72-0.84 GeV range
- Fit on background used to extract dilution factor (order 1-10% depending on -t)
- Higher-t: *f* sufficiently small & sideband sufficiently small to minimize contribution to Σ

B: Calculated integral of estimated BG S+B: Histogram Integral in η peak range

Summary and Next Work

- The GlueX Experiment is studying properties of exotic mesons including production and interaction of particles such as the η
- Showed mass distributions of the final state particle and azimuthal angular distributions for the recoil proton
- Prelim results for Σ up to Itl ~ 2.0 (GeV)²
- Future:
 - Further Monte-Carlo Signal-Background analysis
 - Systematic uncertainties and various checks
 - $\eta \rightarrow \pi^+ \pi^- \pi^0$ analysis and systematic corrections

ACKNOWLEDGEMENTS

GlueX acknowledges the support of several funding agencies and computing facilities - <u>www.gluex.org/thanks</u>

Backup

Past Results and Models

- Past results: 18% of the GlueX-I data (PRC 100(2019).052201) Ľ $E_{\gamma} \in (8.4, 9.0) \, \text{GeV}$
- All other at $E_{\gamma} < 2 \text{ GeV}$:
 - Experiment:
 - Phys. Rev. B771, 05.045, CLAS
 - Theory:
 - Phys. Lett. B695, 199 (Laget)
 - Phys. Rev. D95, 034014 (JPAC)
 - Phys. Rev. C96, 035207 (EtaMAID)
 - Phys. Rev. D7, 865 (Goldstein)

BACKUP - Dilution Factor Estimations - Error Propagation

Careful treatment of variables!

1. $f = \frac{B}{S+B}$. Replace B with B'. Define $B' = \alpha B$ where α is the scale value to level the background (MC) counts with the signal counts.

2.
$$\delta B' = \sqrt{\frac{\partial {B'}^2}{\partial B}} (\delta B)^2 + \frac{\partial {B'}^2}{\partial \alpha} (\delta \alpha)^2 = \sqrt{\alpha^2 B + B^2} (\delta \alpha)^2$$

 $(\alpha)^2$. The scaling uncertainty is computed while figuring the ratio out. If we don't mess with a scaling value, the error term is dropped, and we just have \sqrt{B}

3.
$$\delta f = \sqrt{\frac{\partial f^2}{\partial B'}} (\delta B')^2 + \frac{\partial f^2}{\partial S} (\delta S)^2$$
. We can nicely plug
 $\delta f = \sqrt{\frac{S^2}{(S + \alpha B)^4}} (\alpha^2 B + B^2 (\delta \alpha)^2) + \frac{S \alpha^2 B^2}{(S + \alpha B)^4}$

4. $\Sigma = \frac{\Sigma_{peak} - f\Sigma_{sb}}{1 - f}$. Using the propagating error method, $\delta\Sigma = \frac{1}{1 - f} \sqrt{(\delta\Sigma_{peak})^2 + f^2(\delta\Sigma_{SB})^2 + (\Sigma_{peak} - \Sigma_{SB})^2(\delta f)^2}$

(cross check, no bkgd and no dilution gives the identity relation $\delta \Sigma = \delta \Sigma_{peak}$)

in the result of #2 :

concentrate Monte Carlo effort.

Correcting Beam Asymmetry

