Analysis of the higher twist GTMD F₃₁ for proton in the light-front quark-diquark model.

Shubham Sharma

under the supervision of

Dr. Harleen Dahiya

Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, India

9 June, 2023

CFNS-CTEQ School, 2023

Outline

D Introduction

- 2 Light-Front Quark-Diquark Model
- 3 Input Parameters
- GTMD Correlator

3 Results

SS	(NITJ)
	1

・ロト ・ 四ト ・ ヨト ・ ヨト

Introduction

- The theory of the strong interaction which provides the fundamental description of hadronic structure and dynamics in terms of their elementary quarks and gluons degrees of freedom is Quantum Chromodynamics (QCD).
- The foremost problem of hadron physics is to unravel the internal structure of hadron.

SS (NITJ)

CFNS-CTEQ School, 2023

9 June, 2023

From Special Theory of Relativity:

- Space and time independently are not invariant quantities.
- Rather space-time is an invariant object.

SS (NITJ)

Figure 1: (a) the instant form, (b) the front form, (c) the point form.

Their initial surfaces are a) $x^0 = 0$ b) $x^0 + x^3 = 0$ c) $x^2 = a^2 > 0, x^0 > 0$

ヘロン 人間と 人間と 人間と

э

- It is an Ideal Framework to describe theoretically the hadronic structure in terms of quarks and gluons. It can overcome many obstacles and has many advantages:
 - ► Simple vacuum structure ~ vacuum expectation value is zero.
 - A dynamical system is characterized by ten fundamental quantities: energy, momentum, angular momentum and boost.
 - \sim seven out of which are kinematical. It allows unambiguous definition of the partonic content of a hadron, exact formulae for form factors, physics of angular momentum of constituents.
 - Dispersion Relation (for ON shell particles)

$$k^- = \frac{(k \perp)^2 + m^2}{k^+}$$

 \sim no square root factor.

イロト イポト イヨト イヨト

- A generic four Vector x^{μ} in light-cone coordinates is describe as $x^{\mu} = (x^{-}, x^{+}, x_{\perp})$.
- $x^+ = x^0 + x^3$ is called as light-front time.
- $x^- = x^0 x^3$ is called as light-front longitudinal space variable.
- $x^{\perp} = (x^1, x^2)$ is the transverse variable.
- Similarly, we can define the longitudinal momentum $k^+ = k^0 + k^3$ and light-front energy $k^- = k^0 k^3$.

- The spatial distribution of charge and current in a system can be probed through elastic scattering of electrons, photons etc.
- The distribution of the constituents in momentum space can be measured through deep inelastic knock-out scattering.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Relation between GTMDs, TMDs, GPDs and PDFs

Outline

Introduction

- 2 Light-Front Quark-Diquark Model
 - 3 Input Parameters
- GTMD Correlator

SS (N	T.	I)
------	---	----	----

イロト イポト イヨト イヨト

Light-Front Quark-Diquark Model I

- In this model the proton is described as an aggregate of an active quark and a diquark spectator of definite mass.
- The proton has spin-flavor SU(4) structure and it has been expressed as a made up of isoscalar-scalar diquark singlet $|u S^0\rangle$, isoscalar-vector diquark $|u A^0\rangle$ and isovector-vector diquark $|d A^1\rangle$ states as [1, 2]

$$|P;\pm\rangle = C_S |u S^0\rangle^{\pm} + C_V |u A^0\rangle^{\pm} + C_{VV} |d A^1\rangle^{\pm}.$$

Here, the scalar and vector diquark has been denoted by S and A respectively. Their isospin has been represented by the superscripts on them.

• The light-cone convention $z^{\pm} = z^0 \pm z^3$ has been used.

Light-Front Quark-Diquark Model II

 The frame is picked such that the proton's average momentum (P) and the momentum transfer (Δ) between the initial and the final state is

$$P \equiv \left(P^+, \frac{M^2 + \boldsymbol{\Delta}_{\perp}^2/4}{P^+}, \boldsymbol{0}_{\perp}\right),$$
$$\Delta \equiv \left(0, 0, \boldsymbol{\Delta}_{\perp}\right).$$

• The momentum of the smacked quark (p) and diquark (P_X) are

$$p \equiv \left(xP^+, \frac{p^2 + |\mathbf{p}_{\perp}|^2}{xP^+}, \mathbf{p}_{\perp}\right),$$
$$P_X \equiv \left((1-x)P^+, P_X^-, -\mathbf{p}_{\perp}\right).$$

SS (NITJ)

CFNS-CTEQ School, 2023

Light-Front Quark-Diquark Model III

The Fock-state expansion in the case of two particle for J^z = ±1/2 for the scalar diquark can be expressed as

$$|u S\rangle^{\pm} = \int \frac{dx \, d^2 \mathbf{p}_{\perp}}{2(2\pi)^3 \sqrt{x(1-x)}} \bigg[\psi_{+}^{\pm(\nu)}(x, \mathbf{p}_{\perp}) \bigg| + \frac{1}{2} \, s; xP^+, \mathbf{p}_{\perp} \bigg\rangle + \psi_{-}^{\pm(\nu)}(x, \mathbf{p}_{\perp}) \bigg| - \frac{1}{2} \, s; xP^+, \mathbf{p}_{\perp} \bigg\rangle \bigg],$$

where, flavour index is v = u, d.

• $|\lambda_q \lambda_S; xP^+, \mathbf{p}_{\perp}\rangle$ represents the state of two particle having helicity of struck quark as λ_q and helicity of a scalar diquark as λ_s .

< 日 > < 同 > < 回 > < 回 > < 回 > <

Light-Front Quark-Diquark Model IV

• The LFWFs for the scalar diquark are expressed as [3]

$$\begin{split} \psi_{+}^{+(\nu)}(x,\mathbf{p}_{\perp}) &= N_{S} \; \varphi_{1}^{(\nu)}(x,\mathbf{p}_{\perp}), \\ \psi_{-}^{+(\nu)}(x,\mathbf{p}_{\perp}) &= N_{S} \bigg(-\frac{p^{1}+ip^{2}}{xM} \bigg) \varphi_{2}^{(\nu)}(x,\mathbf{p}_{\perp}), \\ \psi_{+}^{-(\nu)}(x,\mathbf{p}_{\perp}) &= N_{S} \bigg(\frac{p^{1}-ip^{2}}{xM} \bigg) \varphi_{2}^{(\nu)}(x,\mathbf{p}_{\perp}), \\ \psi_{-}^{-(\nu)}(x,\mathbf{p}_{\perp}) &= N_{S} \; \varphi_{1}^{(\nu)}(x,\mathbf{p}_{\perp}). \end{split}$$

Here $\varphi_i^{(\nu)}(x, \mathbf{p}_{\perp})$ are LFWFs and N_S is the normalization constant.

Light-Front Quark-Diquark Model V

• Similarly, Fock-state expansion in the case of two particle for the vector diquark is given as [4]

$$\begin{split} |\nu A\rangle^{\pm} &= \int \frac{dx \, d^2 \mathbf{p}_{\perp}}{2(2\pi)^3 \sqrt{x(1-x)}} \Big[\psi_{++}^{\pm(\nu)}(x, \mathbf{p}_{\perp}) \Big| + \frac{1}{2} + 1; xP^+, \mathbf{p}_{\perp} \Big\rangle \\ &+ \psi_{-+}^{\pm(\nu)}(x, \mathbf{p}_{\perp}) \Big| - \frac{1}{2} + 1; xP^+, \mathbf{p}_{\perp} \Big\rangle + \psi_{+0}^{\pm(\nu)}(x, \mathbf{p}_{\perp}) \Big| + \frac{1}{2} \; 0; xP^+, \mathbf{p}_{\perp} \Big\rangle \\ &+ \psi_{-0}^{\pm(\nu)}(x, \mathbf{p}_{\perp}) \Big| - \frac{1}{2} \; 0; xP^+, \mathbf{p}_{\perp} \Big\rangle + \psi_{+-}^{\pm(\nu)}(x, \mathbf{p}_{\perp}) \Big| + \frac{1}{2} \; - 1; xP^+, \mathbf{p}_{\perp} \Big\rangle \\ &+ \psi_{--}^{\pm(\nu)}(x, \mathbf{p}_{\perp}) \Big| - \frac{1}{2} \; - 1; xP^+, \mathbf{p}_{\perp} \Big\rangle \Big]. \end{split}$$

Here $|\lambda_q \ \lambda_D; xP^+, \mathbf{p}_{\perp}\rangle$ is the state of two-particle with helicity of quark being $\lambda_q = \pm \frac{1}{2}$ and helicity of vector diquark being $\lambda_D = \pm 1, 0$ (triplet).

• □ ▶ • □ ▶ • □ ▶ • □ ▶ • □ ▶

Light-Front Quark-Diquark Model VI

• The LFWFs for the vector diquark for the case when $J^z = +1/2$ are given as

$$\begin{split} \psi_{++}^{+(\nu)}(x,\mathbf{p}_{\perp}) &= N_{1}^{(\nu)} \sqrt{\frac{2}{3}} \Big(\frac{p^{1} - ip^{2}}{xM} \Big) \varphi_{2}^{(\nu)}(x,\mathbf{p}_{\perp}), \\ \psi_{-+}^{+(\nu)}(x,\mathbf{p}_{\perp}) &= N_{1}^{(\nu)} \sqrt{\frac{2}{3}} \varphi_{1}^{(\nu)}(x,\mathbf{p}_{\perp}), \\ \psi_{+0}^{+(\nu)}(x,\mathbf{p}_{\perp}) &= -N_{0}^{(\nu)} \sqrt{\frac{1}{3}} \varphi_{1}^{(\nu)}(x,\mathbf{p}_{\perp}), \\ \psi_{-0}^{+(\nu)}(x,\mathbf{p}_{\perp}) &= N_{0}^{(\nu)} \sqrt{\frac{1}{3}} \Big(\frac{p^{1} + ip^{2}}{xM} \Big) \varphi_{2}^{(\nu)}(x,\mathbf{p}_{\perp}), \\ \psi_{+-}^{+(\nu)}(x,\mathbf{p}_{\perp}) &= 0, \\ \psi_{--}^{+(\nu)}(x,\mathbf{p}_{\perp}) &= 0, \end{split}$$

< ∃ >

Light-Front Quark-Diquark Model VII

• The LFWFs for the vector diquark for the case when $J^z = -1/2$ are given as

$$\begin{split} \psi_{+}^{-(\nu)}(x, \mathbf{p}_{\perp}) &= 0, \\ \psi_{-}^{-(\nu)}(x, \mathbf{p}_{\perp}) &= 0, \\ \psi_{+}^{-(\nu)}(x, \mathbf{p}_{\perp}) &= N_{0}^{(\nu)} \sqrt{\frac{1}{3}} \Big(\frac{p^{1} - ip^{2}}{xM} \Big) \varphi_{2}^{(\nu)}(x, \mathbf{p}_{\perp}), \\ \psi_{-}^{-(\nu)}(x, \mathbf{p}_{\perp}) &= N_{0}^{(\nu)} \sqrt{\frac{1}{3}} \varphi_{1}^{(\nu)}(x, \mathbf{p}_{\perp}), \\ \psi_{+}^{-(\nu)}(x, \mathbf{p}_{\perp}) &= -N_{1}^{(\nu)} \sqrt{\frac{2}{3}} \varphi_{1}^{(\nu)}(x, \mathbf{p}_{\perp}), \\ \psi_{-}^{-(\nu)}(x, \mathbf{p}_{\perp}) &= -N_{1}^{(\nu)} \sqrt{\frac{2}{3}} \Big(\frac{p^{1} + ip^{2}}{xM} \Big) \varphi_{2}^{(\nu)}(x, \mathbf{p}_{\perp}), \end{split}$$

where N_0 , N_1 are the normalization constants.

SS (NITJ)

CFNS-CTEQ School, 2023

9 June, 2023

イロト イポト イヨト イヨト

• Generic ansatz of LFWFs $\varphi_i^{(\nu)}(x, \mathbf{p}_{\perp})$ is being adopted from the soft-wall AdS/QCD prediction [5, 6] and the parameters a_i^{ν} , b_i^{ν} and δ^{ν} are established as [7]

$$\varphi_i^{(\nu)}(x, \mathbf{p}_\perp) = \frac{4\pi}{\kappa} \sqrt{\frac{\log(1/x)}{1-x}} x^{a_i^{\nu}} (1-x)^{b_i^{\nu}} \exp\left[-\delta^{\nu} \frac{\mathbf{p}_\perp^2}{2\kappa^2} \frac{\log(1/x)}{(1-x)^2}\right].$$

Outline

Introduction

2 Light-Front Quark-Diquark Model

3 Input Parameters

GTMD Correlator

SS (NIT.	J)
------	------	----

・ロト ・ 四ト ・ ヨト ・ ヨト

Input Parameters I

• The parameters a_i^{ν} and b_i^{ν} , have been fitted at model scale $\mu_0 = 0.313$ GeV using the Dirac and Pauli data of form factors. [8, 9, 10].

ν	a_1^{ν}	b_1^{ν}	a_2^{ν}	b_2^{ν}	δ^{ν}
и	0.280	0.1716	0.84	0.2284	1.0
d	0.5850	0.7000	0.9434	0.64	1.0

Table 1: Values of model parameters corresponding to up and down quarks.

ν	N _S	N_0^{ν}	N_1^{ν}
и	2.0191	3.2050	0.9895
d	2.0191	5.9423	1.1616

Table 2: Values of normalization constants N_i^2 corresponding to both up and down quarks.

- The AdS/QCD scale parameter κ is chosen to be 0.4 GeV [11].
- Constituent quark mass (*m*) and the proton mass (*M*) are taken to be 0.055 GeV and 0.938 GeV sequentially.
- The coefficients C_i of scalar and vector diquarks are given as

$$C_S^2 = 1.3872,$$

 $C_V^2 = 0.6128,$
 $C_{VV}^2 = 1.$

SS (NITJ)

Outline

1 Introduction

- 2 Light-Front Quark-Diquark Model
- **3** Input Parameters
- GTMD Correlator

SS (NITJ	Ŋ
----------	---

・ロト ・ 四ト ・ ヨト ・ ヨト

GTMD Correlator I

GTMD Correlator

The fully unintegrated quark-quark correlator W^{ν[Γ]}_[Λ^{N_i}Λ^{N_f}](x, **p**_⊥, Δ_⊥, θ) for a spin-¹/₂ hadron at the fixed light-cone time z⁺ = 0, is defined as [15]

$$W^{\nu[\Gamma]}_{[\Lambda^{N_i}\Lambda^{N_f}]} = \frac{1}{2} \int \frac{dz^-}{(2\pi)} \frac{d^2 z_T}{(2\pi)^2} e^{ip.z} \langle P^f; \Lambda^{N_f} | \bar{\psi}^{\nu}(-z/2) \Gamma \mathcal{W}_{[-z/2,z/2]} \psi^{\nu}(z/2) | P^i; \Lambda^{N_i} \rangle \bigg|_{z^*=0}$$

- $|P^i; \Lambda^{N_i}\rangle$ and $|P^f; \Lambda^{N_f}\rangle$ are the initial and final states of the proton with helicities Λ^{N_i} and Λ^{N_f} , respectively.
- The initial and final four momenta of the proton are then given by

$$P^{i} \equiv \left(P^{+}, \frac{M^{2} + \Delta_{\perp}^{2}/4}{P^{+}}, -\Delta_{\perp}/2\right),$$
$$P^{f} \equiv \left(P^{+}, \frac{M^{2} + \Delta_{\perp}^{2}/4}{P^{+}}, \Delta_{\perp}/2\right).$$

イロト イポト イヨト イヨト 二日

GTMD Correlator II

 The frame is picked such that the proton's average momentum (P) and the momentum transfer (Δ) between the initial and the final state is

$$\begin{split} P &\equiv \left(P^+, \frac{M^2 + \boldsymbol{\Delta}_{\perp}^2/4}{P^+}, \boldsymbol{0}_{\perp} \right), \\ \Delta &\equiv \left(0, 0, \boldsymbol{\Delta}_{\perp} \right). \end{split}$$

• The momentum of the smacked quark (p) and diquark (P_X) are

$$p \equiv \left(xP^+, \frac{p^2 + |\mathbf{p}_{\perp}|^2}{xP^+}, \mathbf{p}_{\perp}\right),$$
$$P_X \equiv \left((1-x)P^+, P_X^-, -\mathbf{p}_{\perp}\right).$$

- The square of the total momentum transfer is $t = \Delta^2 = -\Delta_{\perp}^2$.
- The value of Wilson line $W_{[0,z]}$ is chosen to be 1.

SS (NITJ)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

GTMD Parameterization for proton at twist-4

$$\begin{split} W_{[\Lambda^{N_{i}}\Lambda^{N_{f}}]}^{[\gamma^{-}]} &= \frac{M}{2(P^{+})^{2}} \,\bar{u}(P^{f},\Lambda^{N_{F}}) \left[F_{3,1} + \frac{i\sigma^{i+}p_{T}^{i}}{P^{+}} \,F_{3,2} + \frac{i\sigma^{i+}\Delta_{T}^{i}}{P^{+}} \,F_{3,3} \right. \\ &\quad + \frac{i\sigma^{ij}p_{T}^{i}\Delta_{T}^{j}}{M^{2}} \,F_{3,4} \right] u(P^{i},\Lambda^{N_{i}}) \,, \\ W_{[\Lambda^{N_{i}}\Lambda^{N_{f}}]}^{[\gamma^{-}\gamma_{5}]} &= \frac{M}{2(P^{+})^{2}} \,\bar{u}(P^{f},\Lambda^{N_{F}}) \left[-\frac{i\varepsilon_{T}^{ij}p_{T}^{i}\Delta_{T}^{j}}{M^{2}} \,G_{3,1} + \frac{i\sigma^{i+}\gamma_{5}p_{T}^{i}}{P^{+}} \,G_{3,2} + \frac{i\sigma^{i+}\gamma_{5}\Delta_{T}^{i}}{P^{+}} \,G_{3,3} \right. \\ &\quad + i\sigma^{+-}\gamma_{5} \,G_{3,4} \right] u(P^{i},\Lambda^{N_{i}}) \,, \\ W_{[\Lambda^{N_{i}}\Lambda^{N_{f}}]}^{[i\sigma^{j-}\gamma_{5}]} &= \frac{M}{2(P^{+})^{2}} \,\bar{u}(P^{f},\Lambda^{N_{F}}) \left[-\frac{i\varepsilon_{T}^{ij}p_{T}^{i}}{M} \,H_{3,1} - \frac{i\varepsilon_{T}^{ij}\Delta_{T}^{i}}{M} \,H_{3,2} + \frac{M \,i\sigma^{j+}\gamma_{5}}{P^{+}} \,H_{3,3} \right. \\ &\quad + \frac{p_{T}^{j} \,i\sigma^{p+}\gamma_{5}p_{T}^{p}}{M \,P^{+}} \,H_{3,4} + \frac{\Delta_{T}^{j} \,i\sigma^{p+}\gamma_{5}p_{T}^{p}}{M \,P^{+}} \,H_{3,5} + \frac{\Delta_{T}^{j} \,i\sigma^{p+}\gamma_{5}\Delta_{T}^{p}}{M \,P^{+}} \,H_{3,6} \\ &\quad + \frac{p_{T}^{j} \,i\sigma^{+-}\gamma_{5}}{M} \,H_{3,7} + \frac{\Delta_{T}^{j} \,i\sigma^{+-}\gamma_{5}}{M} \,H_{3,8} \right] u(P^{i},\Lambda^{N_{i}}) \,. \end{split}$$

SS (NITJ)

CFNS-CTEQ School, 2023

9 June, 2023

イロト イ理ト イヨト イヨト

Э

Outline

1 Introduction

- 2 Light-Front Quark-Diquark Model
- **3** Input Parameters
- GTMD Correlator

SS (NIT.	J)
------	------	----

・ロト ・ 四ト ・ ヨト ・ ヨト

Results

• For proton, the twist-4 GTMD $F_{31}^{\nu}(x, \mathbf{p}_{\perp}, \boldsymbol{\Delta}_{\perp}, \theta)$ for up quark is given as

$$\begin{split} F_{31}^{u} &= \frac{1}{16\pi^{3}} \frac{1}{4x^{2}M^{2}} \left(C_{S}^{2} N_{s}^{2} + \frac{1}{3} C_{V}^{2} \left(|N_{0}^{u}|^{2} + |N_{1}^{u}|^{2} \right) \right) \\ & \left[(4m^{2} + 4p_{\perp}^{2} - \Delta_{\perp}^{2}) |\varphi_{1}^{u}|^{2} + \left(\frac{4m(1-x)\Delta_{\perp}^{2}}{xM} \right) |\varphi_{1}^{u}| |\varphi_{2}^{u}| \right. \\ & \left. + \left[(4m^{2} + 4p_{\perp}^{2} - \Delta_{\perp}^{2}) (p_{\perp}^{2} - \frac{(1-x)^{2}}{4} \Delta_{\perp}^{2}) \right. \\ & \left. + 4(1-x) (p_{\perp}^{2} \Delta_{\perp}^{2} - (p_{\perp} \cdot \Delta_{\perp})^{2}) \right] \frac{|\varphi_{2}^{u}|^{2}}{x^{2}M^{2}} \right] \end{split}$$

イロト イヨト イヨト イヨト

臣

• For proton, the twist-4 GTMD $F_{31}^{\nu}(x, \mathbf{p}_{\perp}, \mathbf{\Delta}_{\perp}, \theta)$ for down quark is given as

$$\begin{split} F_{31}^{d} &= \frac{1}{16\pi^{3}} \frac{1}{4x^{2}M^{2}} \left(\frac{1}{3} C_{VV}^{2} \left(|N_{0}^{d}|^{2} + |N_{1}^{d}|^{2} \right) \right) \\ & \left[(4m^{2} + 4p_{\perp}^{2} - \Delta_{\perp}^{2}) |\varphi_{1}^{d}|^{2} + \left(\frac{4m(1-x)\Delta_{\perp}^{2}}{xM} \right) |\varphi_{1}^{d}| |\varphi_{2}^{d}| \\ & + \left[(4m^{2} + 4p_{\perp}^{2} - \Delta_{\perp}^{2}) (p_{\perp}^{2} - \frac{(1-x)^{2}}{4} \Delta_{\perp}^{2}) \right. \\ & \left. + 4(1-x) (p_{\perp}^{2} \Delta_{\perp}^{2} - (p_{\perp} \cdot \Delta_{\perp})^{2}) \right] \frac{|\varphi_{2}^{d}|^{2}}{x^{2}M^{2}} \end{split}$$

• The model relation of TMD $f_3^{\nu}(x, \mathbf{p}_{\perp})$ with twist-2 TMD $f_1^{\nu}(x, \mathbf{p}_{\perp})$ [7, 17]

$$x^2 f_3^{\nu}(x, \mathbf{p}_{\perp}) \stackrel{LFQDM}{=} \left(\frac{p_{\perp}^2 + m^2}{M^2} \right) f_1^{\nu}(x, \mathbf{p}_{\perp}).,$$

[Sharma and Dahiya, IJMPA (2022)]

SS (NITJ)

CFNS-CTEQ School, 2023

9 June, 2023

(日)

28/39

• Average Transverse Momentum

$$\langle \mathbf{p}_{\perp}^{r}(\Upsilon) \rangle^{\nu} = \frac{\int dx \int d^{2} p_{\perp} p_{\perp}^{r} \Upsilon^{\nu}(x, \mathbf{p}_{\perp}^{2})}{\int dx \int d^{2} p_{\perp} \Upsilon^{\nu}(x, \mathbf{p}_{\perp}^{2})}.$$

MODEL	f_3^{ν} (LFQDM)	f_3^{ν} (LFCQM)
$\langle p_{\perp} \rangle^{u}$	0.26	0.28
$\langle p_{\perp} angle^d$	0.27	0.28
$\langle p_{\perp}^2 \rangle^u$	0.073	0.11
$\langle p_{\perp}^2 \rangle^d$	0.078	0.11

Table 3: Comparison of average transverse momentum in units of GeV and average transverse momentum squares in units of GeV² for TMD $f_3^{\nu}(x, \mathbf{p}_{\perp}^2)$ in LFQDM (our model) and LFCQM [18].

[Sharma and Dahiya, IJMPA (2022)]

ヘロット 金融 マイヨマ キョン・

x and p_{\perp} Dependence at TMD limit

Figure 2: The GTMD $x^2 F_{31}^{\nu}(x, \mathbf{p}_{\perp}, \Delta_{\perp}, \theta)$ is plotted with respect to x and \mathbf{p}_{\perp} at $\Delta_{\perp} = \mathbf{0}$ (i.e., at TMD limit). The left and right column correspond to u and d quarks sequentially.

< A > < E

x and p_{\perp} Dependence at $\Delta_{\perp} = 0.5$ GeV

Figure 3: The GTMD $x^2 F_{31}^{\nu}(x, \mathbf{p}_{\perp}, \Delta_{\perp}, \theta)$ is plotted with respect to x and \mathbf{p}_{\perp} at $\Delta_{\perp} = \mathbf{0}$ (i.e., at $\Delta_{\perp} = 0.5$ GeV). The left and right column correspond to *u* and *d* quarks sequentially.

< //>
</ >

x and Δ_{\perp} *Dependence*

Figure 4: The GTMD $x^2 F_{31}^{\nu}(x, \mathbf{p}_{\perp}, \boldsymbol{\Delta}_{\perp}, \theta)$ is plotted with respect to x and $\boldsymbol{\Delta}_{\perp}$ at $\mathbf{p}_{\perp} = 0.1$ and $\theta = \frac{\pi}{2}$. The left and right column correspond to *u* and *d* quarks sequentially.

- 47 ▶

p_{\perp} and Δ_{\perp} Dependence

Figure 5: The GTMD $x^2 F_{31}^{\nu}(x, \mathbf{p}_{\perp}, \Delta_{\perp}, \theta)$ is plotted with respect to \mathbf{p}_{\perp} and Δ_{\perp} at x = 0.3 and $\theta = \frac{\pi}{2}$. The left and right column correspond to *u* and *d* quarks sequentially.

< //>
</ >

Outline

1 Introduction

- 2 Light-Front Quark-Diquark Model
- 3 Input Parameters
- GTMD Correlator

5 Results

SS (I	VI	Τ.	I)
-------	----	----	----

34/39

・ロト ・ 四ト ・ ヨト ・ ヨト

Figure 6: The GTMD $x^2 F_{31}^{\nu}(x, \mathbf{p}_{\perp}, \mathbf{\Delta}_{\perp}, \theta)$ is plotted with respect to its variables one by one while keeping the other fixed.

CFNS-CTEQ School, 2023

9 June, 2023

-

A (1) > A (2) > A

Summary II

- The GTMD x²F^ν₃₁(x, p_⊥, Δ_⊥, θ) is plotted with respect to x and p_⊥ at Δ_⊥ = 0 (i.e., at TMD limit x²f₃(x, p_⊥)). The GTMD remains positive for both u and d quarks.
- In plots of GTMD $x^2 F_{31}^{\nu}(x, \mathbf{p}_{\perp}, \mathbf{\Delta}_{\perp}, \theta)$ for both *u* and *d* quarks, it has been observed that the value diminishes
 - when \mathbf{p}_{\perp} greater than 0.6 GeV
 - when Δ_{\perp} greater than 1.9 GeV
 - the possibility of distribution exists only at an optimal blend of p_{\perp} and Δ_{\perp} values.
- The GTMD F_{31} does not flip its sign on changing the quark flavour from u to d quarks.
- As the orientation between \mathbf{p}_{\perp} and Δ_{\perp} changes from parallel to perpendicular, the value of GTMD increases.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Thank you!

SS (NITJ)

CFNS-CTEQ School, 2023

< □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ □ ▷ < □ □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ □ ▷ < □ □ ` □ ` □ `

37/39

References I

- - R. Jakob, P. J. Mulders and J. Rodrigues, Nucl. Phys. A 626, 937 (1997).
 - A. Bacchetta, F. Conti and M. Radici, Phys. Rev. D 78, 074010 (2008).
 - G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157 (1980).
 - J.R. Ellis, D.S. Hwang, and A. Kotzinian, Phys. Rev. D 80,074033 (2009).
 - S. J. Brodsky and G. F. de Teramond, Phys. Rev. D 77, 056007 (2008).
 - G. F. de Teramond and S. J. Brodsky, arXiv: 1203.4025, HEP-PH (2012).

T. Maji and D. Chakrabarti, Phys. Rev. D 95, 074009 (2017).

- T. Maji and D. Chakrabarti, Phys. Rev. D 94, 094020 (2016).
- A. V. Efremov, P. Schweitzer, O. V. Teryaev and P. Zavada, Phys. Rev. D 80, 014021 (2009).

M. Burkardt, arXiv: 0709.2966, HEP-PH (2008).

- D. Chakrabarti and C. Mondal, Phys. Rev. D 88, no. 7, 073006 (2013).
- D. Boer, P. J. Mulders and F. Pijlman, Nucl. Phys. B 667, 201 (2003).
- K. Goeke, A. Metz and M. Schlegel, Phys. Lett. B 618, 90 (2005).
- X. Liu, W. Mao, X. Wang, B. Ma, arXiv: 2110.14070, HEP-PH (2021).
- S. Meissner, A. Metz and M. Schlegel, JHEP 08, 056 (2009).
- S. Sharma, N. Kumar and H. Dahiya, Nucl. Phys. B 992, 116247 (2023).
- S. Sharma and H. Dahiya, Int. J. Mod. Phys. A 37, 2250205 (2022).
- C. Lorcé, B. Pasquini and P. Schweitzer, JHEP **01**, 103 (2015).

< A 1