Impact of finite magnetic field and volume on the susceptibilities of conserved charges

Nisha Chahal

under the supervision of

Dr. Suneel Dutt and Dr. Arvind Kumar

Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, India

June 9, 2023

CFNS-CTEQ Summer School, 2023

1 Introduction

2 Methodology

3 Magnetic field and volume effects

4 Results

<ロト < 聞 > < 国 > < 国 >

臣

QCD Phase Diagram

1 Introduction

2 Methodology

B Magnetic field and volume effects

4 Results

<ロト < 聞 > < 国 > < 国 >

Chiral SU(3) Quark Mean Field Model

Lagrangian density

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{q0} + \mathcal{L}_{qm} + \mathcal{L}_{\Sigma\Sigma} + \mathcal{L}_{VV} + \mathcal{L}_{SB} + \mathcal{L}_{\Delta m} + \mathcal{L}_{h}.$$
 (1)

- \mathcal{L}_{q0} is the free part of massless quarks.
- \mathcal{L}_{qm} quark meson interaction term.
- $\mathcal{L}_{\Sigma\Sigma}$ scalar meson self-interaction term (σ , ζ , χ and δ fields).
- \mathcal{L}_{VV} vector meson self-interaction term (ω, ρ and ϕ fields).
- \mathcal{L}_{SB} , $\mathcal{L}_{\Delta m}$ and \mathcal{L}_h are explicit symmetry breaking terms.

Chiral SU(3) Quark Mean Field Model

Thermodynamical potential density

$$\Omega = \sum_{i=u,d,s} \frac{-2k_{\rm B}T\gamma_{\rm i}}{(2\pi)^3} \int_0^\infty d^3k \left[\ln(1 + e^{-(E_{\rm i}^*(k) - \nu_{\rm i})/k_{\rm B}T)} + \ln(1 + e^{-(E_{\rm i}^*(k) + \nu_{\rm i})/k_{\rm B}T)}\right] - \mathcal{L}_M,$$
(2)

Polyakov Chiral SU(3) quark mean field model

Polyakov loop

$$\Phi(\tilde{\mathbf{x}}) = (\mathrm{Tr}_{\mathrm{c}} \mathbf{L}) / \mathrm{N}_{\mathrm{C}}, \tag{3}$$

and its conjugate

$$\bar{\Phi}(\tilde{\mathbf{x}}) = (\mathrm{Tr}_{\mathrm{c}} \mathrm{L}^{\dagger}) / \mathrm{N}_{\mathrm{C}}.$$
(4)

Total lagrangian density

$$\mathcal{L}_{\text{PCQMF}} = \mathcal{L}_{\text{eff}} -$$

< ∃⇒

Polyakov Chiral SU(3) quark mean field model

Polyakov loop

$$\Phi(\tilde{\mathbf{x}}) = (\mathrm{Tr}_{\mathrm{c}} \mathbf{L}) / \mathbf{N}_{\mathrm{C}}, \qquad (3)$$

and its conjugate

$$\bar{\Phi}(\tilde{\mathbf{x}}) = (\mathrm{Tr}_{\mathrm{c}}\mathrm{L}^{\dagger})/\mathrm{N}_{\mathrm{C}}.$$
(4)

Total lagrangian density

$$\mathcal{L}_{\text{PCQMF}} = \mathcal{L}_{\text{eff}} - \mathcal{U}(\Phi(\tilde{\mathbf{x}}), \bar{\Phi}(\tilde{\mathbf{x}}), \mathbf{T}),$$
(5)

Modified thermodynamical potential density

$$\Omega_{\text{PCQMF}} = -2k_BT \sum_{u,d,s} \int_0^\infty \frac{d^3k}{(2\pi)^3} [\ln(1 + e^{-3(\mathbf{E}_i^*(\mathbf{k}) - \nu_i)./\mathbf{k}_B T} + 3\Phi e^{-(\mathbf{E}_i^*(\mathbf{k}) - \nu_i)./\mathbf{k}_B T} + 3\bar{\Phi} e^{-2(\mathbf{E}_i^*(\mathbf{k}) - \nu_i)./\mathbf{k}_B T)} + \ln(1 + e^{-3(\mathbf{E}_i^*(\mathbf{k}) + \nu_i)./\mathbf{k}_B T} + 3\bar{\Phi} e^{-2(\mathbf{E}_i^*(\mathbf{k}) + \nu_i)./\mathbf{k}_B T)}] + \mathcal{U}(\Phi, \bar{\Phi}, \mathbf{T}), \quad (6)$$

Polyakov Chiral SU(3) quark mean field model

here, $\mathcal{U}(\Phi(\tilde{x}), \bar{\Phi}(\tilde{x}), T)$ is temperature dependent Polyakov loop effective potential,

$$\frac{\mathcal{U}(\Phi,\bar{\Phi},T)}{T^4} = -\frac{a(T)}{2}\bar{\Phi}\Phi + b(T)\ln[1 - 6\bar{\Phi}\Phi + 4(\bar{\Phi}^3 + \Phi^3) - 3(\bar{\Phi}\Phi)^2],$$
(7)

with T-dependent parameters:

$$a(T) = a_0 + a_1 \left(\frac{T_0}{T}\right) + a_2 \left(\frac{T_0}{T}\right)^2, \quad b(T) = b_3 \left(\frac{T_0}{T}\right)^3.$$
(8)

a_0	a_1	<i>a</i> ₂	b_3
3.51	-2.47	15.2	-1.75

Table 1: Parameters in Polyakov effective potential

NC (NITJ)

CFNS-CTEQ Summer School, 2023

June 9, 2023

8/21

1 Introduction

2 Methodology

4 Results

イロト イポト イヨト イヨト

Magnetic field and volume effects

• The total thermodynamical potential is altered and the term giving the contribution of quarks and antiquarks interaction is written as

$$\Omega_{q\bar{q}} = -\sum_{i=u,d,s} \frac{|q_i| BT}{2\pi} \sum_{k=0}^{\infty} \alpha_k \int_{-\infty}^{\infty} \frac{dp_z}{2\pi} \left(\ln g_i^+ + \ln g_i^- \right).$$
(9)

Total effective energy of the quarks is modified as

$$E_i^* = \sqrt{p_z^2 + m_i^{*2} + |q_i| (2n+1-\Upsilon)B},$$
(10)

• The impact of finite size effect is assimilated in the model by using the approximation method defined in by introducing a lower momentum cut-off, p_{min} [MeV] = π/R [MeV] = Λ , where *R* is the length of a cubic volume.

NC	(NITI)
110	11115)

1 Introduction

2 Methodology

3 Magnetic field and volume effects

NC (NITJ)

CFNS-CTEQ Summer School, 2023

June 9, 2023

ヘロト 人間 とくほと 人間と

臣

Results

NC (NITJ)

CFNS-CTEQ Summer School, 2023

June 9, 2023

æ

$$\mu_{q}=0, eB = 0 \text{ GeV}^{2} \text{ and } R = \infty$$

$$\mu_{q}=0, eB = 0 \text{ GeV}^{2} \text{ and } R = 2 \text{ fm}$$

$$\mu_{q}=0, eB = 0.4 \text{ GeV}^{2} \text{ and } R = \infty$$

$$\mu_{q}=350 \text{ MeV}, eB = 0 \text{ GeV}^{2} \text{ and } R = \infty$$

$$\mu_{q}=350 \text{ MeV}, eB = 0 \text{ GeV}^{2} \text{ and } R = 2 \text{ fm}$$

$$\mu_{q}=350 \text{ MeV}, eB = 0.4 \text{ GeV}^{2} \text{ and } R = \infty$$

↓ ↓ ⊕ ↓ ↓ ≡ ↓ ↓ ≡ ↓
 June 9, 2023

æ

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 June 9, 2023

1 Introduction

2 Methodology

3 Magnetic field and volume effects

4 Results

ヘロト 人間 とくほと 人間と

臣

- We have analyzed the impact of finite volume and external magnetic field on the thermodynamic properties using Polyakov loop extended chiral SU(3) quark mean field model in the asymmetric quark matter.
- The impact of external magnetic field and finite system size on the phase diagram of QCD have been investigated by inspecting the variation of scalar and vector fields.
- Susceptibilities of conserved charges are found to be enhanced in the regime of critical-point.
- These fluctuations can be deduced from event-by-event inspection of the experimental data and hence play significant role in determination of CEP.

Thank you!

NC (NITJ)

CFNS-CTEQ Summer School, 2023

< □ → < □ → < □ → < □ → < □ → Ξ → Ξ June 9, 2023

21/21