Imaging Calorimetry for ePIC

Akshaya Vijay Supervisor : Dr. Wouter Deconinck

CFNS-CTEQ Summer School, June 2023

Electromagnetic Calorimetry

All physics processes require the detection of the scattered electron for the momentum or energy reconstruction and particle identification.

The main tasks of the barrel electromagnetic calorimeter are:

- Detect the scattered electrons and separate them from pions
- Require moderate energy resolution
- Particle Identification: separate secondary electrons and positrons from charged hadrons.

Major challenge: Space Limitation inside the solenoid

ECal Technologies

- PbWO₄ crystal:
 - good energy resolution
 - high granularity to detect and identify electrons, photons, and pions
 - prohibitively expensive
 - needs precise temperature control

• Scintillating Glass

- resolution comparable with lead tungstate
- not sensitive to temperature
- energy leakage

- Absorber/Scintillating Fibers: W/ScFi:
 - consists of many scintillating fibers embedded in an absorber material which is then gathered at the front or the back (or both) and read out with photosensors
 - Too low electron-pion separation for barrel
 - energy resolution too low

• Pb/Sc Shashlyk:

- a stack of absorber and scintillator plates
- cannot meet electron-pion separation requirement

None of these technologies is a good solution for the Barrel Electromagnetic Calorimetry requirement for EIC.

We can do better!

Combining the Pb/ScFi technology for GlueX Calorimeter and the AstroPix sensors we can do better.

Pb/ScFi Technology

- The fibers are embedded into a heavy material: lead
- The resolution depends of the fiber density and the absorber material.
- Energy resolution : $\sigma = 5.2\%/\sqrt{E} \oplus 3.6\%$

Pb/ScFi matrix materials

AstroPix Sensors

Developed for NASA AMEGO-X space mission).

Key Features:

- Very low power dissipation
- Good energy Resolution
- 500 μ m pixel size

ePIC Imaging Barrel ECal

• Combination of Pb/SciFi calorimeter with a silicon tracker to precisely measure the energy profile and exact position of each particle inside electromagnetic showers.

 \bullet with 4 layers of Astropix sensors interleaved with 3 Pb/ScFi layers followed by a large section of Pb/ScFi section

✓ Excellent energy resolution
✓ Low-energy electron-pion
separation
✓ Position resolution due to the
silicon layers

Sampling Fraction

The sampling fraction is the fraction of total energy released in the active material.

Energy Reconstruction for 5 GeV

- Improve the reconstruction plots (in progress)
- Run simulations to determine background rates at the sensors.

Thank you...