Analyzing $\pi^{0} \eta$ and $\pi^{0} \eta^{\prime}$ systems in the search for exotic hybrid mesons at ClueX

CFNS-CTEQ Summer School-Stony Brook University

The Physics of the Electron-Ion Collider

Zachary Baldwin, June 16, 2023 for the GlueX Collaboration and

Carnegie Mellon University

Meson

Total angular momentum $\mid J=0,1,2, \ldots$

$$
\text { Parity } \quad P=(-1)^{L+1}
$$

Charge Conjugation $\mid \quad C=(-1)^{L+S}$
L is the relative orbital angular momentum of the q and \bar{q}
S is the total intrinsic spin of the $q \bar{q}$ pairs

L	S	$J^{P C}$	L	S	$J^{P C}$	L	S	$J^{P C}$
0	0	0^{-+}	1	0	1^{+-}	2	0	2^{-+}
0	1	1^{--}	1	1	0^{++}	2	1	1^{--}
			1	1	1^{++}	2	1	2^{--}
			1	1	2^{++}	2	1	3^{--}

Total angular momentum $\mid J=0,1,2, \ldots$

Parity $\mid P=(-1)^{L+1}$

Allowed J $J^{P C}$ quantum numbers

L	S	$J^{P C}$	L	S	$J^{P C}$	L	S	$J^{P C}$
0	0	0^{-+}	1	0	1^{+-}	2	0	2^{-+}
0	1	1^{--}	1	1	0^{++}	2	1	1^{--}
			1	1	1^{++}	2	1	2^{--}
			1	1	2^{++}	2	1	3^{--}

> | Discovering forbidden |
| :---: |
| quantum numbers would be |
| immediate evidence of a non- |
| $q \bar{q}$ state (i.e. new QCD states) |

Forbidden $J^{P C}$ quantum numbers $0^{--} 0^{+-} 1^{-+} 2^{+-}$

The goal of GlueX is to map the spectrum of light hybrid mesons and potentially find evidence of these new QCD states

What predictions show the best exotic quantum number hybrid?

Lattice QCD predicts "gluonic

 excitations", confirming mesons that are not in constituent quark model known as exotic mesons

Phys. Rev. D83, 111502 (2011)

Multiple experiments have looked for resonances in the

P-wave:

E852, Crystal Barrel, CLEO, etc.

L	\boldsymbol{S}	P	\boldsymbol{D}	\boldsymbol{F}	\cdots
$J^{P C}$	0^{++}	1^{-+}	2^{++}	3^{-+}	\cdots

InOT1C

Lattice QCD predicts "gluonic excitations", confirming mesons that are not in constituent quark model known as exotic mesons

$\left(\begin{array}{ll}\pi_{1} \rightarrow & \pi_{1}(1400) \rightarrow \\ \pi_{1}(1600) \rightarrow & \pi \eta \\ \pi \eta^{\prime}\end{array}\right.$

Introduction $/ \eta^{(1)} \pi$ / Conclusion
Past Experiments

COMPASS

Combined analysis for both
$\pi \eta$ and $\pi \eta^{\prime}$
$\pi^{-} p \rightarrow n \pi^{-} \eta^{(')}$

Multiple experiments have looked for resonances in the P-wave:
E852, Crystal Barrel, CLEO, etc.

L	\boldsymbol{S}	P	\boldsymbol{D}	\boldsymbol{F}	\cdots
$J^{P C}$	0^{++}	1^{-+}	2^{++}	3^{-+}	\cdots

EXOTIC

COMPASS

Combined analysis for both
$\pi \eta$ and $\pi \eta^{\prime}$
$\pi^{-} p \rightarrow n \pi^{-} \eta^{(')}$

Phys. Bev. D83, 111502 (2011)

Multiple experiments have looked for resonances in the P-wave:
E852, Crystal Barrel, CLEO, etc.

L	\boldsymbol{S}	P	\boldsymbol{D}	\boldsymbol{F}	\cdots
$J^{P C}$	0^{++}	1^{-+}	2^{++}	3^{-+}	\cdots

Exotic
A. Rodas et al. [Joint Physics Analysis Center], PRL 122, 042002 (2019)

Lattice QCD, although powerful, only provides limited information.

No information is provided about what production mechanism is the best, how often the particle is produced, which decay mode is more prominent, etc.

The main goal of the Glue X experiment is understand the underlying nature of confinement within QCD by mapping the spectrum of light quark states With an emphasis on searching for evidence of a non- $q \bar{q}$ state (i.e. new QCD states)

Introduction $/ \eta^{(1)} \pi /$ Conclusion GlueX Description

Forward Calorimeter
 Barrel $\begin{gathered}\text { Time-of- } \\ \text { Flight }\end{gathered}$

Designed to
reconstruct final state
particles from

Introduction $/ \eta^{(\prime)} \pi /$ Conclusion
Invariant Mass Spectrum

Not Acceptance Corrected
Not Acceptance Corrected

Gottfried-Jackson

Gottfried-Jackson viewed in the center of mass of the $\pi^{0} \eta^{(1)}$ system
$Z_{G J}$ is taken as the direction of the incident photon
$\vartheta_{G J}$ is the angle between the directions of $\eta^{(1)}$ and the incident γ

Introduction $/ \eta^{(1)} \pi /$ Conclusion
Angular Distributions
Not Acceptance Corrected

$$
I(\Omega, \Phi)=2 \kappa \sum_{k}\left\{\left(1-P_{\gamma}\right)\left|\sum_{l, m}[l]_{m ; k}^{(-)} \mathscr{R} \mathscr{E}\left[Z_{l}^{m}(\Omega, \Phi)\right]\right|^{2}+\left(1-P_{\gamma}\right)\left|\sum_{l, m}[l]_{m ; \mathcal{K}^{(+)}}^{\mathscr{S}} \mathscr{M}\left[Z_{l}^{m}(\Omega, \Phi)\right]\right|^{2}+\right.
$$

Described by

$$
\Omega=\theta, \phi
$$

(in $G J$ or $H X$ frame)

$$
\left(1+P_{\gamma}\right) \mid \sum_{l, m}\left[\left.l l_{m ; k}^{(+)} \mathscr{R} \mathscr{E}\left[Z_{l}^{m}(\Omega, \Phi)\right]\right|^{2}\left(1+P_{\gamma}\right)\left|\sum_{l, m}[l]_{m ; k}^{(-)} \mathscr{I} \mathscr{M}\left[Z_{l}^{m}(\Omega, \Phi)\right]\right|^{2}\right\}
$$

Joint Physics Analysis Center
[V.Mathieu et.al., PRD100(2019) 5, 054017]

Event based maximum likelihood fitting procedure
(ability to acceptance correct)
Divide in bins of mass to perform each fit (don't require dependence on energy)

Fit $[l]_{m ; k}^{(\pm)}$to the data $Z_{l}^{m}(\Omega, \Phi)=Y_{l}^{m}(\Omega) e^{(-i \phi)}$

- $m={ }^{-} l, \ldots,{ }^{+} l$
- $(\pm)=$ reflectivity

Described by 3 angles: $\quad \cos \theta_{\eta^{(1)}}$ $\phi_{\left.\eta^{(}\right)}$
in the resonance frame

Introduction $/ \eta^{(\prime)} \pi /$ Conclusion
Partial Wave Analysis

$$
\gamma p \rightarrow 4 \gamma \pi^{+} \pi^{-}
$$

$$
\gamma p \rightarrow 4 \gamma
$$

Different final state particles, backgrounds, acceptances, etc.
still many similarities btw decay modes

Mass Independent Fits

$0.1<-t<0.3$

$$
\text { TMD Model } \rightarrow L_{m}^{\epsilon}=S_{0}^{ \pm}, D_{-1}^{-}, D_{0}^{ \pm}, D_{1}^{ \pm}, D_{2}^{+}
$$

Introduction $/ \eta^{(\prime)} \pi /$ Conclusion
Partial Wave Analysis

$$
\gamma P \rightarrow 4 \gamma \pi^{+} \pi^{-}
$$

$$
\gamma p \rightarrow 4 \gamma
$$

Different final state particles, backgrounds, acceptances, etc.
still many similarities btw decay modes
Mass Independent Fits

$0.1<-t<0.3$

$$
\text { TMD Model } \rightarrow L_{m}^{\epsilon}=S_{0}^{ \pm}, D_{-1}^{-}, D_{0}^{ \pm}, D_{1}^{ \pm}, D_{2}^{+}
$$

Summary

Resonances can be seen for:
$a_{0}(980), a_{2}(1320)$ as well for possible higher resonances

- First look at mass independent partial wave analysis $\gamma p \rightarrow \eta \pi^{0} p$
- Comparison between different decay modes looks similar

Future Work

- Continue Monte Carlo simulations to further understand detector acceptance and resonance regions
- Further collaborate with theory group to understand properties of both $\eta^{(1)} \pi^{0}$ systems
- Perform mass dependent partial wave analysis

GlueX acknowledges the support of several funding agencies and computing facilities
gluex.org/thanks

BACKUP SLIDES

Major contributions to background involves Δ^{+} baryons and multiple N^{*} states

Removal of the Δ^{+}is relatively simple, but this is not the case for the N * region

> Is there a clear way to reject each N^{*} ?

Introduction $/ \eta^{(1)} \pi /$ Conclusion
Baryonic Contributions
Center Of Mass

The exotic hybrid signature in $\eta^{(1)} \pi$ systems would be observed as odd partial waves, which may be enhanced by other processes

Understanding and modeling this type of exchange is crucial

Closely working with

Can study the upper vertex exchange through a beam asymmetry
 to the naturally of the exchange particle

Beam asymmetries for different decays modes will behave the same!
$\gamma p \rightarrow 4 \gamma \pi^{+} \pi^{-} p$
$\gamma p \rightarrow 4 \gamma p$

$$
\text { HIGHER } \Sigma \text { FOR } 4 \gamma \pi^{+} \pi^{-} ?
$$

For the more complicated reaction, there seems to be something that we don't understand yet and that's ok!
Σ is integrated over multiple variables mentioned previously so in both channels the different acceptances for these variables will ultimately affect their overall contribution

Introduction $/ \eta^{(1)} \pi$ / Conclusion
VanHove Analysis

