Particle production studies for pfRICH

Jan Vanek

BNL

pfRICH meeting

OVERVIEW

Reconstruction of scattered electrons from reconstructed tracks

- MC DIS ep collisions 5x41, 10x100, and 18x275 GeV
- Reconstruction using eCAL and pfRICH
- Comparison to MC scattered electrons
 - η distributions
 - Reconstructed scattered electron purity
- Multiple p, Q^2 and y (inelasticity) bins
 - Same binning as for MC presented in the past

SCATTERED ELECTRON SELECTION USING ECAL

- 1. Find leading cluster in negative eCAL
 - Using EcalEndcapNClusters class
 - Leading cluster = cluster with highest energy in event
- 2. Find matching charged track
 - Using ReconstructedChargedParticles class
 - Using simID to do the matching
 - Get momentum of matched charged track
- 3. Use extracted energy and momentum for further analysis
 - Calculated E/p, Q2, y
 - Evaluated scattered electron candidate purity
 - Find PDG ID of selected candidates through simID and check if matching MC track is electron or not

SCATTERED ELECTRONS – MC VS. RECO. (eCAL)

- MC DIS ep collisions at 5x41 GeV
- Comparison of MC scattered electron and reconstructed scattered electron candidates
 - Reconstructed scattered electrons identified using eCAL
- Reconstructed and MC distribution seem to be consistent
 - Shape of RC distributions influenced by eCAL acceptance

SCATTERED ELECTRONS – MC VS. RECO. (eCAL)

- MC DIS ep collisions at 10x100 GeV
- Comparison of MC scattered electron and reconstructed scattered electron candidates
 - Reconstructed scattered electrons identified using eCAL
- Reconstructed and MC distribution seem to be consistent
 - Shape of distributions mostly well reproduced
 - Influence of cut efficiency and purity
 - Lower eCAL efficiency for lower p

-3

-2.5

-2

-1.5

-3.5

SCATTERED ELECTRONS – MC VS. RECO. (eCAL)

Counts

- MC DIS ep collisions at 18x275 GeV
- Comparison of MC scattered electron and reconstructed scattered electron candidates
 - Reconstructed scattered electrons identified using eCAL
- Reconstructed and MC distribution seem to be consistent
 - Shape of distributions mostly well reproduced
 - Influence of cut efficiency and purity
 - Lower eCAL efficiency for lower p

RECO. SCATTERED ELECTRON PURITY -- eCAL

- MC DIS ep collisions at 5x41 GeV
- Purity of reconstructed scattered electron candidates identified using eCAL
 - Extracted PDG ID of corresponding MC particles via simID
 - Bin 0-1: Number of other particles, misidentified as electrons (N_b)
 - Bin 1-2: Number of MC electrons identified as RC electrons (N_e)
 - Purity = $N_{\rm e}/(N_{\rm e}+N_{\rm b})$
 - In figures
 - This method cannot distinguish background electrons and scattered electrons
 - Background electron levels should be small in most of the phase space

RECO. SCATTERED ELECTRON PURITY -- eCAL

- MC DIS ep collisions at 10x100 GeV
- Purity of reconstructed scattered electron candidates identified using eCAL
 - Extracted PDG ID of corresponding MC particles via simID
 - Bin 0-1: Number of other particles, misidentified as electrons $(N_{\rm b})$
 - Bin 1-2: Number of MC electrons identified as RC electrons (N_e)
 - Purity = $N_{\rm e}/(N_{\rm e}+N_{\rm b})$
 - In figures
 - This method cannot distinguish background electrons and scattered electrons
 - Background electron levels should be small in most of the phase space

RECO. SCATTERED ELECTRON PURITY -- eCAL

- MC DIS ep collisions at 18x275 GeV
- Purity of reconstructed scattered electron candidates identified using eCAL
 - Extracted PDG ID of corresponding MC particles via simID
 - Bin 0-1: Number of other particles, misidentified as electrons $(N_{\rm b})$
 - Bin 1-2: Number of MC electrons identified as RC electrons (N_e)
 - Purity = $N_{\rm e}/(N_{\rm e}+N_{\rm b})$
 - In figures
 - This method cannot distinguish background electrons and scattered electrons
 - Background electron levels should be small in most of the phase space

SCATTERED ELECTRON SELECTION USING pFRICH

- 1. Find leading momentum track
 - Using ReconstructedChargedParticles class
 - Accepting only tracks with negative charge
- 2. Match leading momentum track to MC
 - Via simID
- 3. In case MC is $\pi^{-}/K^{-}/\bar{p}$ find pfRICH PID probability
 - PID: Generate random number and compare to pfRICH PID probability
 - If hadron is well identified, do not accept it for further analysis
 - If track s not identified as $\pi^-/K^-/\bar{p}$, accept as scattered electron
 - Eventually would like pfRICH PID information directly for electrons
 - Not available in current pfRICH PID table
 - Rejecting tracks which don't have valid pfRICH information
 - Rejecting tracks which are not $e^{-}/\pi^{-}/K^{-}/\bar{p}$
 - Gives control over testing particle sample
 - Overall small influence on distributions and purities

SCATTERED ELECTRONS – MC VS. RECO. (pfRICH)

- MC DIS ep collisions at 5x41 GeV
- Comparison of MC scattered electron and reconstructed scattered electron candidates
- Reconstructed scattered electrons identified using pfRICH
- Reconstructed and MC distribution seem to be consistent
 - Shape of distributions mostly well reproduced
 - Much lower efficiency than with eCAL

SCATTERED ELECTRONS – MC VS. RECO. (pfRICH)

Counts

- MC DIS ep collisions at 10x100 GeV
- Comparison of MC scattered electron and reconstructed scattered electron candidates
- Reconstructed scattered electrons identified using pfRICH
- Reconstructed and MC distribution seem to be consistent
 - Shape of distributions mostly well reproduced
 - Much lower efficiency than with eCAL

SCATTERED ELECTRONS – MC VS. RECO. (pfRICH)

- MC DIS ep collisions at 18x275 GeV
- Comparison of MC scattered electron and reconstructed scattered electron candidates
- Reconstructed scattered electrons identified using pfRICH
- Reconstructed and MC distribution seem to be consistent
 - Shape of distributions mostly well reproduced
 - Much lower efficiency than with eCAL

RECO. SCATTERED ELECTRON PURITY - pfRICH

- MC DIS ep collisions at 5x41 GeV
- Purity of reconstructed scattered electron candidates identified using eCAL
 - Extracted PDG ID of corresponding MC particles via simID
 - Bin 0-1: Number of other particles, misidentified as electrons (N_b)
 - Bin 1-2: Number of MC electrons identified as RC electrons (N_e)
 - Purity = $N_{\rm e}/(N_{\rm e}+N_{\rm b})$
 - In figures
 - Lower purity than with eCAL, but still quite good
 - May improve with electron PID information in pfRICH

RECO. SCATTERED ELECTRON PURITY - pfRICH

- MC DIS ep collisions at 10x100 GeV
- Purity of reconstructed scattered electron candidates identified using eCAL
 - Extracted PDG ID of corresponding MC particles via simID
 - Bin 0-1: Number of other particles, misidentified as electrons $(N_{\rm b})$
 - Bin 1-2: Number of MC electrons identified as RC electrons (N_e)
 - Purity = $N_{\rm e}/(N_{\rm e}+N_{\rm b})$
 - In figures
 - Lower purity than with eCAL, but still quite good
 - May improve with electron PID information in pfRICH

RECO. SCATTERED ELECTRON PURITY - pfRICH

- MC DIS ep collisions at 18x275 GeV
- Purity of reconstructed scattered electron candidates identified using eCAL
 - Extracted PDG ID of corresponding MC particles via simID
 - Bin 0-1: Number of other particles, misidentified as electrons $(N_{\rm b})$
 - Bin 1-2: Number of MC electrons identified as RC electrons (N_e)
 - Purity = $N_{\rm e}/(N_{\rm e}+N_{\rm b})$
 - In figures
 - Lower purity than with eCAL, but still quite good
 - May improve with electron PID information in pfRICH at low momenta
 - At high momenta can use eCAL

Jan Vanek, pfRICH

SUMMARY

- Added reconstruction of scattered electrons using eCAL and pfRICH
 - MC DIS ep collisions 5x41, 10x100, and 18x275 GeV
- eCAL provides very good scattered electron selection
 - Very good performance at high momenta, as expected
- pfRICH also provides good selection of scattered electrons
 - Potential to go to lower momenta than with eCAL only
 - Timing information?
 - Lower efficiency than eCAL
 - Less particles are accepted
 - Overall lower scattered electron purity than with eCAL
 - Still good performance
 - Possibly will be improved with new pfRICH simulation

THANK YOU FOR ATTENTION