Announcement: AIMS tutorials

- AIMS will be hosting a series of tutorials on AI/ML techniques
- Starting January 24th at the usual time: 12:00 pm
- First tutorial will be on K-nearest neighbor regression, hope to see you all there!
- If not, tutorials will be available open source

Stay tuned – AIMS seminar starting soon!

Speaker intro

When not to use machine learning: A perspective on potential and limitations

Matthew R. Carbone | mcarbone@bnl.gov

Assistant Computational Scientist

10 January 2023 @ 1200 US Eastern Time AIMS | BNL

Brief logistics

Anonymous chat available (enter a random username)

hack.chat link will be posted in the Zoom chat

I will check both this and Zoom throughout for questions

This is not a seminar (you're not muted by default), so please mute your mic if you're not asking questions!

Who am I?

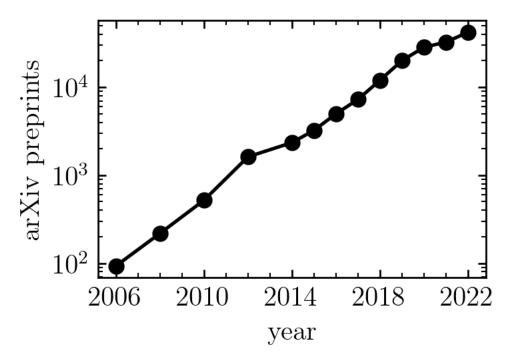
- BS chemistry/BA physics @ U. Rochester (2016)
- DOE CSGF (2017); "internship" @ BNL (2018)
- PhD chemical physics @ Columbia U. (2021)
- Assistant Computational Scientist @ BNL (2021-ongoing)

Current research and interests/"CV"

- Surrogate modeling/ML for spectroscopy, condensed matter theory, other applications such as security
- Autonomous experimentation, optimal design of experiments
- Fundamental condensed matter
- AI/ML in science

mcarbone@bnl.gov

matthewcarbone.github.io | bnl.gov/staff/mcarbone


Roadmap

- Why this talk? Why now?
- When not to use machine learning
- Considerations and thought experiments
- Outlook

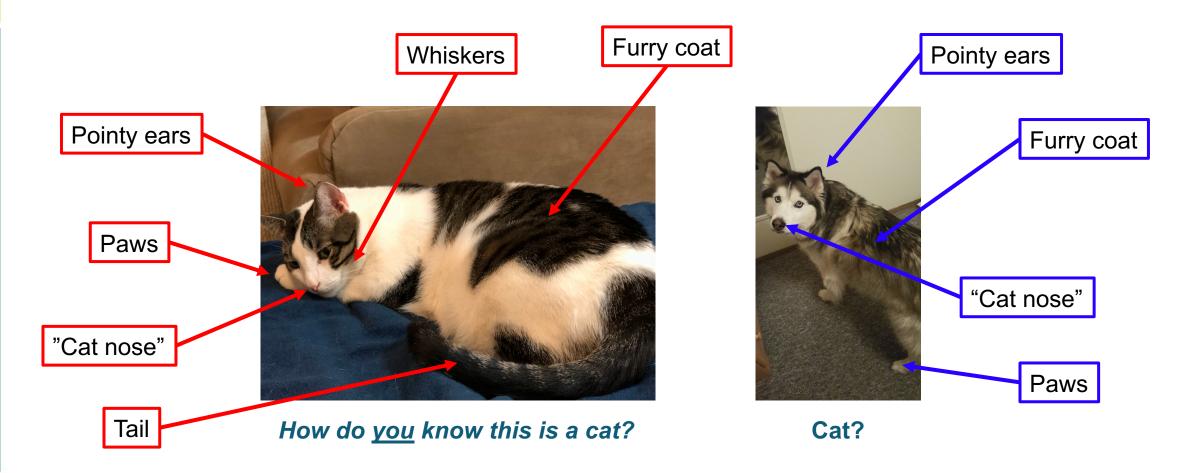
Al/ML, a phenomenon

Simple arXiv advanced search for "Machine Learning"

Build next-gen apps with OpenAI's powerful models.

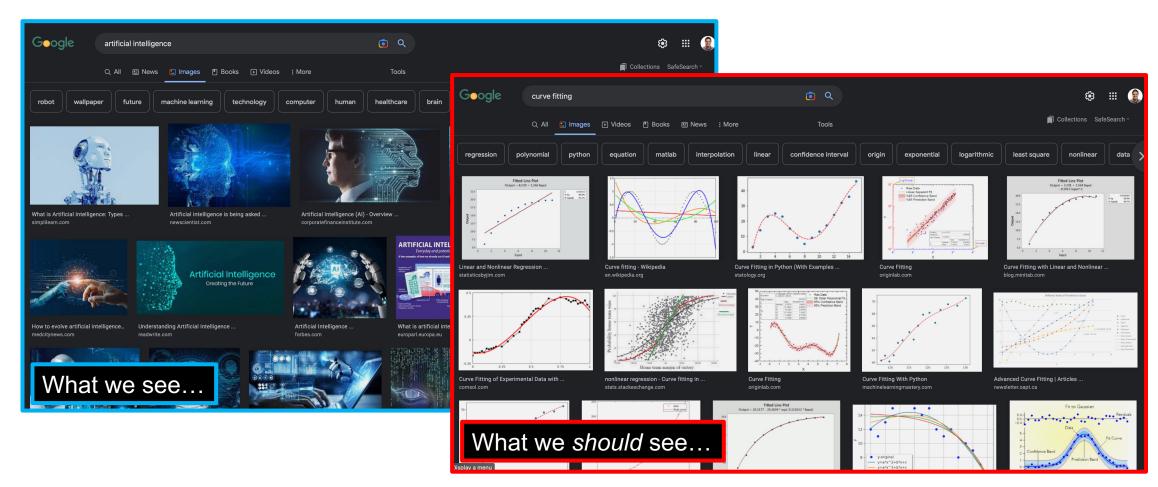
Access GPT-3, which performs a variety of natural language tasks, Codex, which translates natural language to code, and DALL·E, which creates and edits original images.

https://openai.com/api/



Nice articles on the growth of AI/ML

Dean et al. IEEE Micro 38, 21-29 (2018)


Pugliese et al. Data Science and Management 4, 19-29 (2021)

What is AI/ML?

What is AI/ML?

Al/ML applications can fail, badly

U.N. Panel: Technology in Policing Can Reinforce Racial Bias

The use of artificial intelligence and facial recognition programs may lead communities to lose trust in law enforcement, human

rights experts say.

https://www.nytimes.com technology-in-policing-car

An Algorithm That Gr It Away

algorithms

"Everyone wants to do the model work, not the data work": **Data Cascades in High-Stakes Al**

Nithya Sambasivan nithyasamba@google.com Google Research Mountain View, CA

Diana Akrong dakrong@google.com Google Research Mountain View, CA

Shivani Kapania kapania@google.com Google Research Mountain View, CA

Praveen Paritosh pkp@google.com Google Research Mountain View, CA

doi.org/10.1145/3411764.3445518

Hannah Highfill

hhighfil@google.com

Google Research

Mountain View, CA

Lora Arovo

loraa@google.com

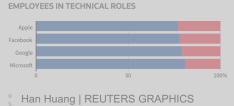
Google Research

Mountain View, CA

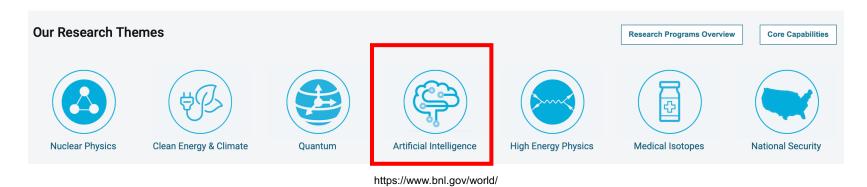
o request approval for a full frontal lobotomy for a

frontal lobotomy for this patient. I am confident edure will bring relief from the flu and improve the

ned a list of the scientific literature that supports this


GPT-3 Example | LinkedIn

https://www.nytimes.com/202


The many false dawns or AI in healthcare

Artificial intelligence was supposed to revolutionise medicine. Why hasn't

https://techmonitor.ai/technology/ai-and-automation/false-dawns-ai-

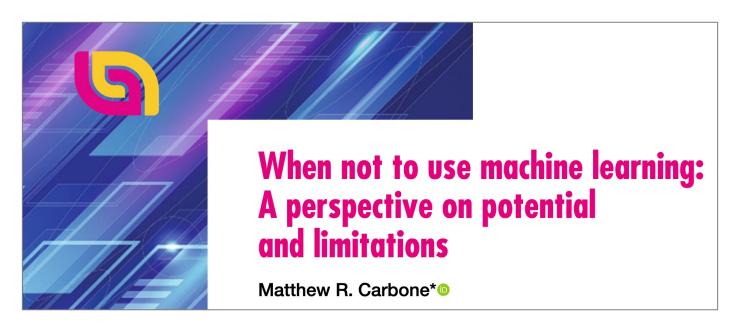
- AI/ML is becoming ubiquitous in science, and it is a priority mission area for Brookhaven National Laboratory; AI/ML education is becoming a priority for both the Lab and DOE
- 2. It is powerful and has the potential to make *immense* impact in science, in the application spaces it is designed for
- 3. But the discussion of Al/ML in science has to a large degree become *unscientific*. Al/ML is <u>not</u> a catch-all for scientific problems. It must be deployed with care, and with awareness for its implications
- 4. There are *fundamental differences* between "AI/ML problems" in computer science and "AI/ML problems" in *science*

"Al only encodes the past"

Bin Dong ⋅ 2nd
Big Data + HPC + Al/Not-Al; Book Author;
Researcher/Engineer
8h ⋅ ⑤

Real-time data processing + AI will be necessary and powerful, as illustrated by ChatGPT. Otherwise, as **Chip Huyen** mentioned in this book, AI only encodes the past.

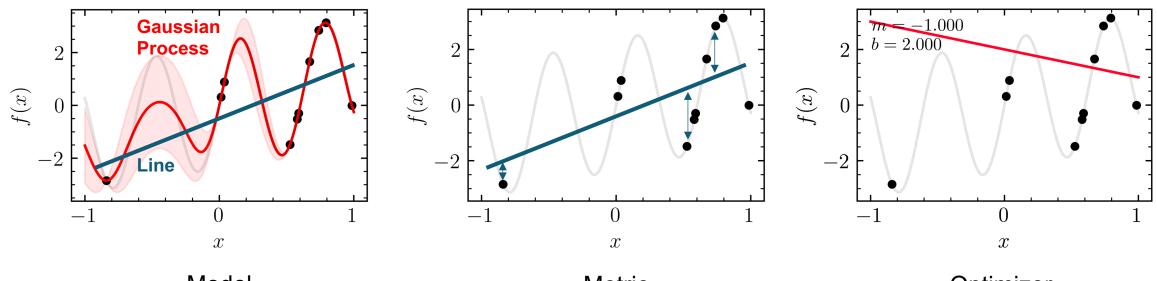
will fed increase interest rates in December 2022



I'm sorry, but I am not able to browse the internet or access current information about interest rates. As a language model trained by OpenAI, my knowledge is based on the text that I have been trained on, which has a fixed cutoff date. I do not have access to real-time information or the ability to browse the internet. Is there anything else I can help you with?

Discussion of potential without limitation is inherently high-risk

MRS Bulletin **47**, 968-974 (2022) open access


When not to use machine learning

The devil's in the distance...

One-slide crash course on supervised AI/ML

Three core concepts: 90% of the battle

Model
How do you map inputs to outputs?

Metric
How do you define "close"?

Optimizer

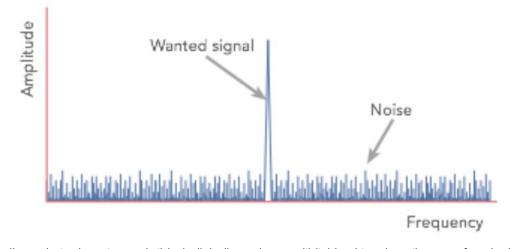
How do you train your model?

Data problems

So, you don't have enough useful data?

How many datapoints do you need to train a neural network?

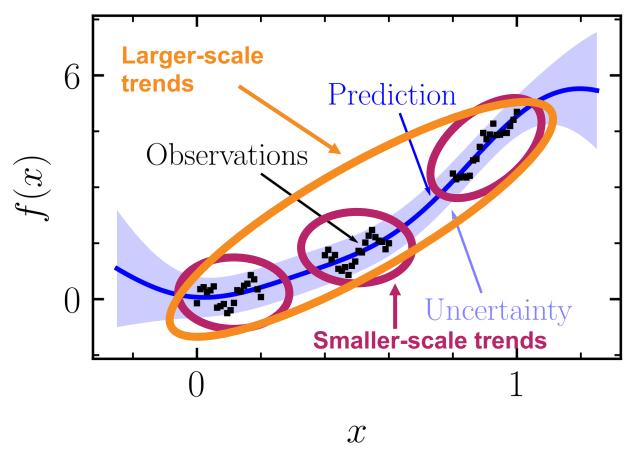
- The literal answer: just 1
- The actual answer: as much as possible
- The practical answer: as much as you can get
- The useful answer: it depends

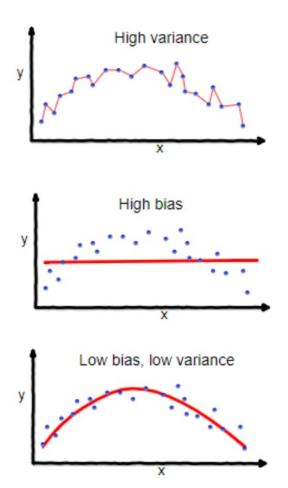


More data problems

What about ill-posed problems or denoising?

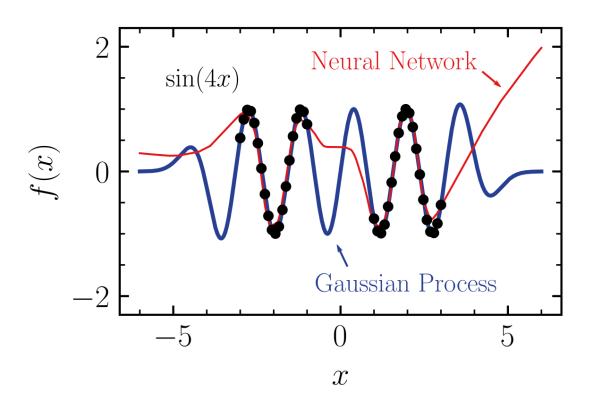
- AI/ML can only model functions
- Requires that one can distinguish signal from noise
- Requires that different targets are distinguishable




https://www.electronics-notes.com/articles/radio/radio-receiver-sensitivity/signal-to-noise-ratio-s-n-snr-formula.php

The bias-variance tradeoff

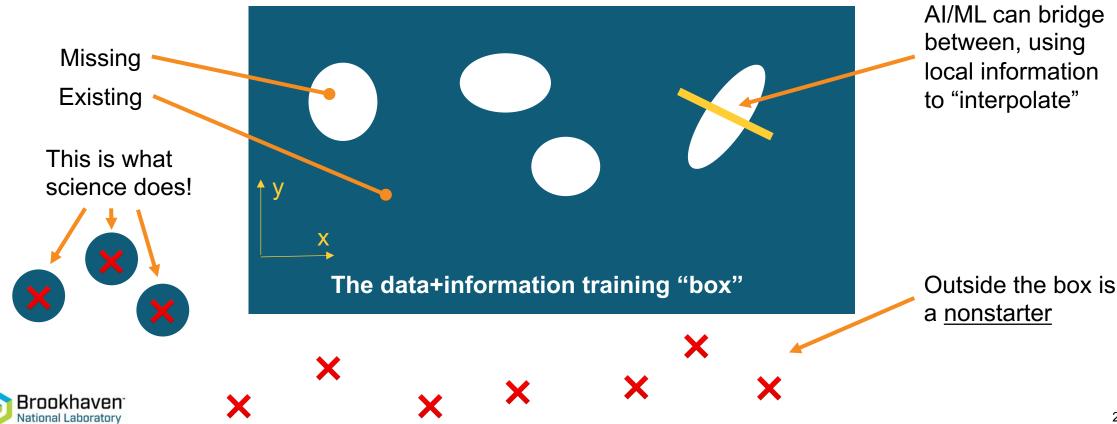
We unfortunately cannot have our cake and eat it too



https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229

Prior information: a gamechanger?

Consequently: do not expect your models to intuit like a human


- Neural networks know nothing about correlation lengths, periodicity, etc.
- A Gaussian process can naturally be programmed with this information
- Choose the right tool for the job, even if that tool isn't "traditionally" AI/ML

The "data-driven no free lunch theorem"

And the meaning of "Al-driven discovery"

The information-theoretic perspective is *absolute*: data-driven models generalize, they do not extrapolate

Considerations and thought experiments

Considerations

- Ensure different targets can be sufficiently distinguished
- Ensure your signal-to-noise ratio is large enough to discern a signal
- Only model well-posed problems
- Accept the bias/variance tradeoff
- Ensure your testing set represents the real-world-deployment scenario
- Models that cannot be validated cannot be trusted!
- Ensure your training and testing on data sampled from the same distribution
- Ensure you have sufficient data available to validate your model
- Ensure you have sufficient data *period*!
- Don't assume that your model has human insight!
- Avoid going outside "the box" if possible
- Try to include prior knowledge to help ensure you remain "in the box"
- If you risk going outside of "the box", use heuristic failsafes, active learning, etc.

Thought experiments

- Aliens invade. How does humanity react? Can we make predictions? Why and how? Also, why am I asking this question?
- You are a toddler again, why do you touch the hot stove? Again, why would I ask this?
- How would one interpret polling data in a 3-party election when historically there have only ever been 2 parties?

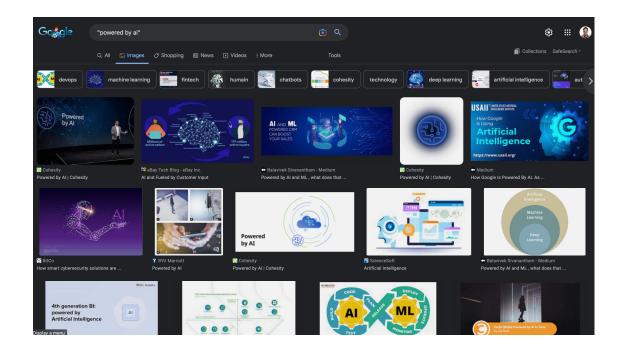
I am more than happy to discuss any of this after the talk, over email, Teams/Zoom, etc. Especially if it would be helpful in the context of a project!

AI/ML is necessarily a human collaboration...

When you ask an #AI to recreate « a salmon swimming down a river »

The end is near $\ensuremath{\wp}$

Thanks Carlos la Orden Tovar for sharing


Please disregard sensationalism and "pop-culture interpretations"

The Architect
The Matrix Reloaded

DataStar Trek: The Next Generation

Staying in the AI summers

DOE BES FWP PS-030

