Heavy-Ion Physics @ LLNL

Experiment

Staff

Postdoc

Luis and JiaJun (RENEW students)

Heavy Flavor & Cold Nuclear Matter

Ramona Vogt, Vincent Cheung (PD)

- Highlights:
- Quarkonium polarization in Pb+Pb collisions in the improved color evaporation model (with Cheung)
- Co-PI of 'Heavy Flavor Probes of QCD Matter' Topical Collaboration
- Publications/Talks:
- 1 Publication (PRC); 3 invited talks

Service:

- Editorial board for Phys. Rev. Research; Associate Editor for PRC; reviewer for multiple journals
- DNP Secretary-Treasurer; APS Fellowship Committee
- DNP Program Committee for April 2023; INT program organizer (10/22); IAC of Hard Probes 2023 (3/23); GHP biennial meeting committee (4/23); QWG organizer (9/22);
- Hot & Cold QCD Organizing Committee; NSAC LRP Writing Committee, Nuclear Data Sub-Committee
- Upcoming in FY23+:
- ICEM charmonium production in e+p collisions at the EIC; calculations of feed down contributions

Do Tetraquarks exist? Understanding the nature of the mysterious X(3872) (Postdoc-led LDRD)

- V. Cheung (PI), Q. Hu (co-PI), A. Angreami, R. Vogt
- Objectives:
- Determine whether the X(3872) is a compact tetraquark or some larger object
- Approach:
- Use ATLAS measured data to quantify the size of QCD states in heavy-ion collisions
- Comover interaction model to interpret ATLAS data, describe how QCD states behave in QGP medium
- Intrinsic Charm model to predict momentum and spatial distributions inside the detector
- Improved color evaporation model to describe the orientation (polarization) of QCD states

ATLAS: Jets & Substructure

Soon published with JETSCAPE Comparisons (arXiv.org/2211.11470)

• Goal:

 Quantitative insight into jet quenching using jet substructure observables

• Approach:

- Correlate jet energy loss with new observables sensitive to QGP length scales
- Improve particle reconstruction with ML treating calorimeter clusters as high dimensional images
- Data Scientist (Piyush Karande) fully integrated into project
- Enable new capabilities to exploit ML techniques in other contexts

R_{A} ATLAS > 158 GeV 0 - 10 %-1.4 Caucal et al. 1.2 1.2 < Q_s < 1.8 GeV $0.17 < \alpha_{med} < 0.35$ Wide jets 0.8 0.6 Narrow iets 0.4 0.2 anti- $k_t R = 0.4$ jets, |y| < 2.1*pp* 5.02 TeV, 260 pb⁻¹ Pb+Pb 5.02 TeV. 1.72 nb⁻¹ $z_{cut} = 0.2, \beta = 0$ 0.003 0.01 0.02 0 1 0.2 0.3 r_g

Heavy Ions WG

Conveners: M. Rybar, A. Angerami

GlobalJ. Jia, A. MilovElectroweakZ. Citron, A. LebedevJetsS. Tapia, D. HangalUPCS. Mohapatra, P. Steinberg	Subgroup	Conveners
ElectroweakZ. Citron, A. LebedevJetsS. Tapia, D. HangalUPCS. Mohapatra, P. Steinberg	Global	J. Jia, A. Milov
JetsS. Tapia, D. Hangal UPCS. Mohapatra, P. Steinberg	Electroweak	Z. Citron, A. Lebedev
UPC S. Mohapatra, P. Steinberg	Jets	S. Tapia, D. Hangal
	UPC	S. Mohapatra, P. Steinberg
Trigger Q. Hu, J. Kremmer	Trigger	Q. Hu, J. Kremmer

Jet E-Loss Dependence on Substructure

Heavy Ion Plans

Aaron Angerami, RS, Dhanush Hangal + 1-2 new postdoc positions to be posted in 2023

ATLAS:

- Participation in LHC run 3 (2023-24)
- Improving reconstruction with ML
- Constrain nuclear PDFs with UPC dijets
- Heavy flavor jet quenching and substructure
- Complete definitive jets in HI exp. methods paper **SPHENIX:**
- Apply ML methods to TPC-Distortion Corrections
- Upsilon production, jet suppression and substructure
 EIC (includes FOA funding):
- Build on AI-driven detector design proposal:
 - ML-informed optimized detector configuration
 - Exploring new ML applications with UC-EIC partners

LLNL Heavy-Ion UPC ML techniques

Al-Driven Detector Design for the EIC

Collaborative NP-FOA with B. Nachman (co-PI, LBL) and M. Arratia (lead PI, UC Riverside) Supporting postdoc Fernando Torales-Acosta (former UCB student and LLNL NSSC intern)

• Goal:

 New detector design optimized enabled by deep neural networks

• Approach:

- Use EIC detector simulations to train and surrogate model (differentiable)
- Use surrogate to optimize detector parameters,
 e.g. segmentation, number of layers, ...
- Fast calorimeter simulation for optimal detector configuration
- Specific demonstration for ATHENA EM barrel calorimeter
- Builds directly on ML expertise acquired from LDRD, including collaboration with data scientist

Optimize using differentiable ML models:

evaluate derivatives of (performance metric) wrt (detector parameters)

Planned Optimizations would not be possible w/o ML Surrogate Models

Primary LLNL EIC Focus = NP RENEW

Initially funded 2022 as NP Traineeships to Broaden and Diversify Nuclear Physics Cal-Bridge-2-EIC in collaboration with UCR (Miguel=Lead), UCLA (Zhongbo), LBNL (Ernst), & CPP

• Goal:

 Long overdue program to reach wider, more diverse community and convince them to join the Nuclear Science Research Communicate, emphasis on undergraduates at MSI's

• Approach:

- Initial 2-year focus on EIC and integrate CalBridge Program https://www.cpp.edu/calbridge/
- Next round, refine focus to UC-EIC and local Cal-State campuses (more discussion earlier/later)
- LLNL focus on teaching EIC physics and ML tools through <u>https://lc.llnl.gov/jupyterhub</u>, maintained by Livermore Computing (<u>https://computing.llnl.gov</u>)

