

Silicon Tracker R&D (eRD111, eRD113, generic)

Nicole Apadula

Lawrence Berkeley National Laboratory California EIC Consortium Collaboration Meeting January 27, 2023

Silicon Tracker R&D @ LBNL

- EIC Silicon Consortium
 - Goal to develop & construct full tracking & vertexing detector for EIC based on 65 nm MAPS
- EIC project R&D (targeted to detector 1, ePic)
 - eRD111
 - Silicon tracker, no sensors
 - eRD113
 - Sensor development & characterization
- EIC generic R&D (risk mitigation, upgrades/optimizations)
 - Embedded silicon
 - Aluminum flex cable

BERKELE

Current status

r [mm]

26

l [mm]

270

X/X0 %

0.05

0.24

BARREL

I avor 0

Disk 5

1350

- ePIC SVT layout developed for the first simulation campaign
 - **5** barrel layers, **5** disks per side

Layer 0	36	270	0.05	
Layer 1	48	270	0.05	
Layer 2	120	270	0.05 0.25 0.55	
Layer 3	270	540		
Layer 4	420	840		
DISKS	+z [mm]	-z [mm]	X/X0 %	
DISKS	+z [mm]	-z [mm]	X/X0 % 0.24 0.24 0.24	
Disk 1	250	-250		
Disk 2	450	-450		
Disk 3	700	-650		
Disk 4	1000	-900	0.24	

-1150

Goal: Minimize material, maximize acceptance

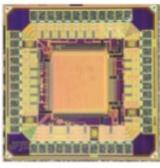
- ALICE ITS3 MLR1: 2021+
 - 65 nm process verified
- ALICE ITS3 ER1: submission end of 2022
 - Stitching verification & first yield information

Big unknown!

- Open questions:
 - What changes need to be made if yield is low?
 - Power distribution over the stitched sensor

				#		
		▋▋▋▋				
8						
	▋₿₿₿	▋₿₿₿				
l						
					#	
				1		

BERKELE'


eRD113: Sensor development/characterization

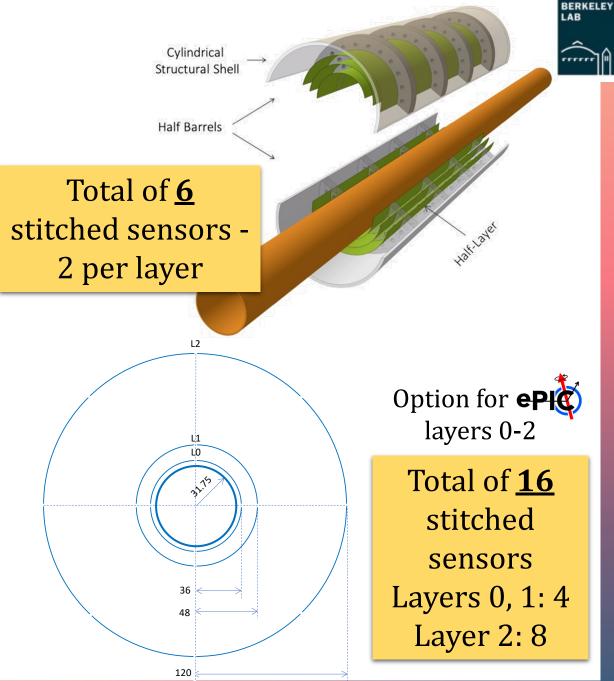
- Sensor development RAL, BNL, LBNL: at CERN for 6 months
- Sensor characterization INFN, UK, LBNL, ORNL, LANL
- Establish work & contribution with ALICE ITS3 team on wafer-scale sensor design
- Characterization of ITS3 MLR1 & ER1
- Make plans for Large Area Sensor (LAS)
 - Understand changing stitching plans, evaluate specific functionalities for EIC sensors
- Collaborate with eRD111 & 104

MLR1 Characterization - DPTS

DPTS

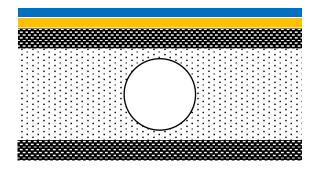
Digital Pixel Test Structure

- 32 x 32 matrix, pitch: 15 µm
- Digital time-encoded pixel position


Test in-pixel discrimination and asynchronous digital readout Instrumental for readout of future chips

- Test bench setup in progress
 - Have local participation experience in bench & beam tests @ CERN & Trieste
- Task list available from ALICE ITS3
- Plans for beam tests at the 88"
 - Radiation testing?
 - ALPIDE telescope from LANL?

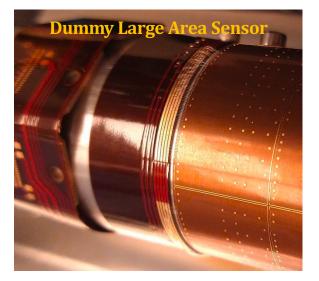
From ALICE ITS₃ to EIC

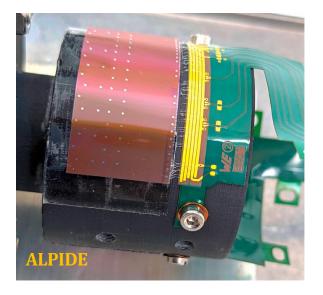

- ITS3 sensor reticle size will be optimized for ALICE radii
- **EIC radii larger** → geometry needs to be adapted
- Some mechanical challenges still to be thought out
 - Lose some of the structural support from curvature
 - What is the stress/strain on silicon?

Staves & discs

- Material budget an issue for tracking
 - Longer lengths mean moi

Potential stave & disc cross sections


Not to scale

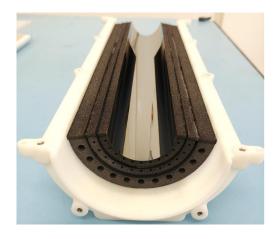

- FPC/power (aluminum)
- Silicon
- 🗱 Carbon fiber
- Carbon foam

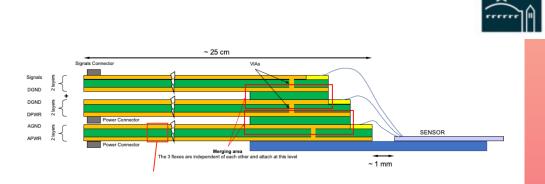
BERKELEY

eRD111: Silicon tracking (no sensors)

- Modules (shown) INFN, UK
- Barrel & discs LBNL, UK, LANL
- Mechanics, infrastructure, cooling LBNL, LANL

Contact person: Nicole Apadula 1/27/23

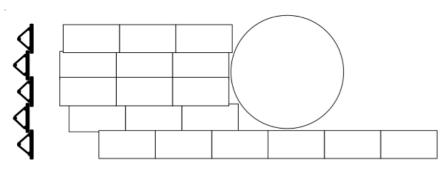


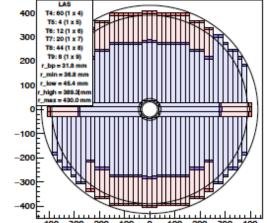

Traditional module: support+FPC+sensor

BERKELE'

Barrel & discs

Vertex layers




- **Conceptual design**, including possible new support structures
- **Prototype pieces**: carbon foam longerons/rings, carbon fiber support for wire bonding near periphery

• Stave & discs

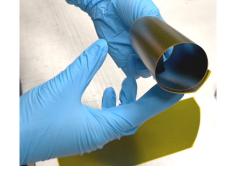
- **Conceptual design** seriously consider stave-like disc design
- **Prototype pieces** & (possible) mechanical & thermal tests

EIC-SVT Disk-2/3n Tile

Mechanics, infrastructure, cooling

- Updated CAD model of tracker
- Analysis of cooling options
 - Build on FY22 work for air
 - More information in talks from Beatrice & Mathias
 - Vertex cooling options
 - Beam pipe bake out
 - Add liquid cooling options
 - Particularly important for periphery (900 4000 mW/cm²)
- **Conceptual designs** for detector support structures
 - Prototype pieces with (possible) mechanical & thermal tests

Generic R&D: embedded silicon

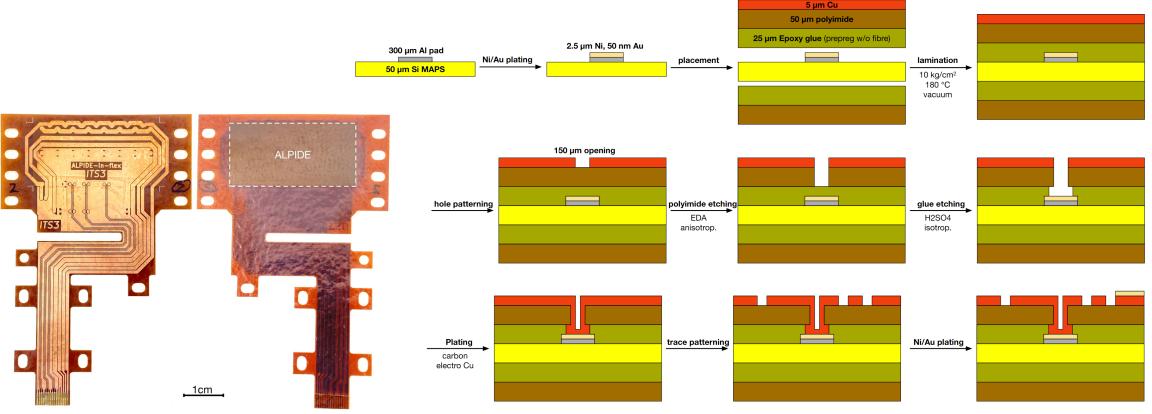

CF longeron

Motivation

- Alleviate deformation expected from carbon foam longerons
- Reduce mechanical strain to the bare silicon
- Sagitta/Outer layers: Planar staves → larger, more cylindrical barrel structures
- Overcome possible weakness in power distribution network in 65 nm process

Risk reduction for detector 1, options for detector 2

Silicon lamination

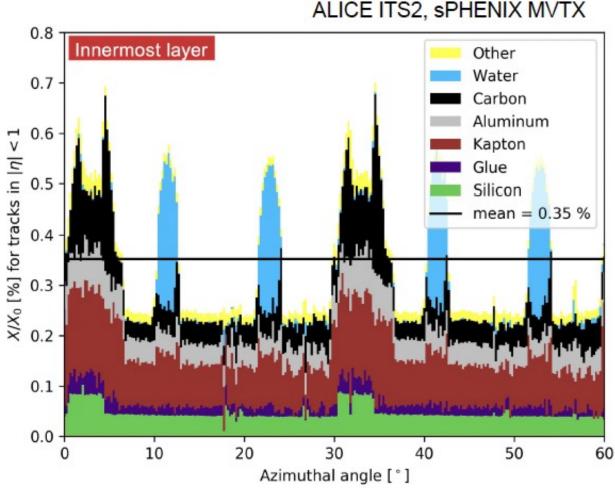

- ORNL on-site facility will produce embedded silicon pieces (single reticle & larger area)
- LBNL will use pieces for **thermal & mechanical tests**
- Similar process ongoing at CERN

Improved mechanical resistance with low material: 0.1% X/X₀ silicon + kapton

"MAPS foil"

https://doi.org/10.1016/j.nima.2022.167673

- Kapton foil lamination process developed for thinned MAPS
- Demonstrated successfully on single ALPIDE sensors (ITS2)



Radiation length:

CERN Kharkiv Institute

Explore companies: Hughes Circuit Inc. (CA) Qflex Inc. (CA) Omni Circuit Boards Ltd. (BC, Canada)

From Yuan Mei's Generic R&D presentation

Summary

- R&D for the silicon tracker is underway
 - Work expected to pick up significantly in FY23
- Focus is on keeping material budget low & buildability
- @LBNL
 - Barrel & disc designs & prototypes, Mechanical support & infrastructure designs & prototypes, Cooling studies → focused on air, Embedded silicon, Aluminum flex
- Welcome input & collaboration
 - Lot's of work still needed to make this successful!

