Air Cooling Studies for the EIC Silicon Tracker

Beatrice Liang-Gilman

Nikki Apadula, Shujie Li, Zachary Sweger, Emma Yeats, Richard Lew, Remi Seddigh, Mathias Labonte, Saeahram Yoo, Andy Park, Oscar Tapia Gallegos

UC Consortium Jan 27 2023

Tracking Requirements

- Good momentum resolution
- Wide kinematic coverage
- Large acceptance
- High precision collision vertex determination
- Low material budget with high granularity

EPIC detector

Current Si Tracking Setup

- MAPS = Monolithic Active Pixel Sensors
 - Low material silicon wafers
- Barrel
 - 3 vertexing layers
 - 2 barrel layers
- Disks (forward & backward regions)
 - 5 on each side

New Technology

- ALICE ITS2 used the ALPIDE chip
- New chip being developed for ITS₃
 - Wafer scale (up to ~28 x 10 cm)
 - Ultra-thin $(20-40 \mu m)$
 - Curved
 - Fully stitched
- For the EIC...
 - Wafer-scale not suitable for staves & discs
 - Optimize for large area coverage and yield
 - ALICE ITS₃ ~ 0.12 m² vs EIC silicon ~ 10 m²

Wafer-scale sensor

Layout of ITS3 Inner Barrel, <u>ALICE Letter of Intent</u>

Current R&D

Project R&D at Berkeley (focused on Silicon tracker)

- Detector optimization
 - Geometry
 - Layout of staves and discs
- Mechanics, integration, and cooling
 - Is air cooling viable for staves/discs?

Other R&D efforts

- Services reduction
- Forming modules from stitched sensors

Work done by Peter Jones (UK Birmingham)

5

Air Cooling

Tracking requirements for EIC are very strict and heavily influenced by material budget.

- Is internal air cooling a viable option?
 - Is air effective enough?
 - Is our design stable enough to withstand air being blown at it?
- Goal: Optimize the temperature and pressure
- Variables we can adjust:
 - Power consumption
 - Foam types
 - Foam thicknesses

Setup (Schematic)

Direction of airflow

Setup

Direction of Air Flow

Types of Carbon Foam Staves

- Chemical Vapor Deposition (CVD)
 - Insulator, precursor to RVC
- Reticulated Vitreous Carbon (RVC)
 - Conductor, due to graphite coating

Туре	Length (mm)	# of Si Heaters	Foam ppi	Thickness (mm)	Width (mm)
CVD	100	2	30	4	40
RVC	100	2	30	4	40
RVC	100	2	30	6	40
RVC	~500	8	45	6	40

LDRD Comparison of Different Length Staves

= Our data = LDRD data

Power Density $= 0.5 \text{ W/cm}^2$

The temperature and pressure measurements line up pretty well with the LDRD measurements.

Results ΔP and ΔT vs Q for different 100 mm staves

CVD stave achieves the desired temperature and pressure differences

ΔT (° C) vs. Air Flow (cfm) Comparison 60 – RVC 6mm Power Density RVC 4mm $= 0.5 \text{ W/cm}^2$ 50 — CVD 4mm 40 ΔT (° C) 20 • $\Delta T < 10 \ ^{\circ}C$ • $\Delta P < 1$ bar 20 for a 1 m long stave 0+-0.0 2.5 2.0 0.5 1.5 3.0 3.5 1.0 4.0 Air Flow (cfm)

11

Recent Work

- Adjustments were made to the setup
 - Different temperature probes
 - Replaced hoses
 - Worked on increasing air speed
- Made heat measurements along the 0.5 m stave
 - Measured ΔT at air speeds of 2 3.4 cfm and power densities of 0.02 - 0.50 W/cm²
 - Learned to predict ΔT based on the volumetric flow value and the z-distance
- Ordered a new fan
- Looked into other heater options
- Results in Mathias' talk!

Future Improvements

• Air

Power Densities:

- Faster air flow
- Cooling the air
- Setup
 - EIC specific structures
 - Vertexing layers: Wind tunnel with EIC layout
 - Outer layers and discs: More sizably realistic structures
 - More material budget friendly design
 - New types of foams
 - Using a combination of air + liquid

280 mm

Diagram of ITS3 Stitched Sensor, <u>ALICE ITS3 LoI</u>

Heaters

- Want a more realistic heater
- Design
 - Pixel matrix is 3 x 9 reticles
 - Each reticle is (1.885 x 3) cm
 - Periphery is (1 x 5.655) cm
- Power density requirements
 - Pixel matrix: 0.01 W/cm²
 - Periphery: 1 W/cm²
- Currently in contact with 2-3 companies
- Will put onto stave with foam

Simulation

- Work performed by Emma Yeats
- Ansys fluid simulations
 - Modeling the transient and steady state silicon temperature
 - Study effects of air cooling on the entire tracker
 - Based on in-lab setup
 - Will be applied to current design for the EIC Silicon Tracker (both disks and barrel)
 - Temperature simulations of the beampipe bakeout
 - Incoming cooling air for silicon
 - Hot gas to heat beryllium beampipe
 - Check that temperature gets past 100 °C for proper bakeout

Summary

- EIC has strict tracking resolution requirements
- Tracking resolution performs better with less material budget
- Several efforts being made to improve the material budget, including designing a new MAPS chip and testing alternative ways of cooling the system
- Current testing is being done using heaters and carbon foam
- Simultaneously doing simulation work to see how well the setup will hold under higher pressures
- budget friendly way of cooling the EIC silicon detector!

• With additional testing and improvements to the setup, we can create a more material

Thank you!

Backup

z-axis [mm]