Summary of calorimeter insert design and performance

> Ryan Milton UCR

California EIC Consortium Meeting,

Jan. 27-28, 2023

Since last meeting

- Joint UCLA/UCR NIMA paper on forward HCal insert design and simulation performance
 - Nuclear Inst. and Methods in Physics Research, A 1047 (2023) 167866
- Insert implemented in ePIC simulations (Bryce Canyon)
- Numerous studies ongoing:
 - Machine learning (UCR, LLNL, Ben Nachman)
 - SiPMs and scintillators
 - Prototype and beam test
 - Jet studies in ePIC

Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

A high-granularity calorimeter insert based on SiPM-on-tile technology at the future Electron-Ion Collider

Miguel Arratia^{a,*}, Kenneth Barish^a, Liam Blanchard^a, Huan Z. Huang^b, Zhongling Ji^b, Bishnu Karki^a, Owen Long^a, Ryan Milton^{a,b}, Ananya Paul^a, Sebouh J. Paul^a, Sean Preins^a, Barak Schmookler^a, Oleg Tsai^b, Zhiwan Xu^b

^a Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA

^b Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA

Insert recap

- Instruments near the beampipe in forward region, $3 < \eta < 4$ or $2.1^{\circ} < \theta < 5.7^{\circ}$
- High-granularity to yield a good angular resolution
 - Allows measurements of jets and hadronic final states in DIS reactions
- Fully integrated into the hadron endcap and solves mechanical issues in complex region

Performance metrics recap

- Good energy linearity and e/h close to 1
 - Don't need extra compensation techniques for hadronic showers
- Energy resolutions validated against CALICE W/Sc sampling calorimeter

Handling leakage

- Combine insert + HCal energies with: $E_{total} = \frac{E_{insert}}{SF_{insert}} + \frac{E_{HCal}}{SF_{HCal}}$
- Low energy tails indicate leakage out of insert into HCal

Studying absorber materials

- Original design: 30 layers W/Sc (.17 λ_n each) + 21 layers Fe/Sc (.107 λ_n each), 7.3 λ_n total
- Steel necessary to contain the magnetic flux
- Tungsten desirable for compact showers and compensated response
- What is the optimal splitting between tungsten and steel?

Blue: Tungsten, Gray: Steel

50 GeV π^- at $\eta^* = 3.7$

Hadronic response to layer numbers

- Higher average energy with all steel, but much wider distribution
 - Large low energy tail as well
- Even just a little bit of tungsten narrows the distribution

Energy resolutions

- Tungsten improves hadronic resolution but with diminishing returns
- Steel has better energy resolutions with electromagnetic showers

Tungsten perks

- Improved energy linearity with tungsten
- Significantly improved e/h ratio

Scintillator design

- Hexagonal cells to easily tessellate the area
- SiPM-on-tile design
 - SiPMs hosted on PCBs fit into hemispherical dimples
- Epoxy in grooves between cells to reduce optical crosstalk
- Potentially changing granularity throughout insert

Optimizing scintillator cells

- Moving away from megatiles to 3D-printed frames with individual cells
- 3D-printed frames reduce optical crosstalk between cells
- Frame size and shapes can be adjusted
- Will hear more about scintillator efforts in later talks

Jet studies in ePIC simulations

- ECal insert and HCal insert implemented in Bryce Canyon ePIC simulations
- Highest energy jets produced in the $3 < \eta < 4$ range
 - Calorimeters in this range critical for measurement

Jet metrics in forward endcap

- Linear response of truth energy vs reconstructed energy
- Total P_t measured agrees with the truth values
 - Worse agreement without the insert (Arches) and only using HCal
 - Critical for reconstruction of Q^2
- These studies used both the ECal insert and HCal insert

Summary and future plans

- HCal insert enables detection near beampipe in forward region with validated energy resolutions and controlled leakage
- HCal insert design is being optimized for W/Steel layers and scintillating cell designs
- Future plans:
 - Further jet studies within forward calorimeters from ePIC simulations
 - Papers on scintillators and potentially ECal insert
 - Turning my attention to machine learning efforts for hadron endcap
 - With Consortium members from UCR, LLNL, and Ben Nachman

Thank you!

Backup: Quantifying leakage

- Leakage: Energy that escapes from the detector
 - Will result in events with lower energy deposition
- Leakage = $\frac{\# events with E_{total} < \mu 3\sigma}{\pi}$

events

- μ, σ from Gaussian fits of energy distributions
- Some transverse leakage out of insert, mostly captured by HCal

15

Backup: Geometric acceptance

- Consistent acceptance between $3.5 \le \eta^* \le 3.8$ throughout entire insert
- For $3.2 \le \eta^* \le 3.4$, some acceptance but still captured by HCal
 - For $3.0 \le \eta^* < 3.2$, mainly captured by HCal
- z^* and η^* are with respect to proton beam axis

Backup: Quantifying geometric acceptance and containment

- Can quantify how well the insert accepts and contains particles at different angles
 - Number of interaction lengths (λ_n) traversed
 - Insert is about 7.3 λ_n long

17

Backup: Performance against η^*

Resolutions of π^- vs η^*

Backup: Insert readout

- PCBs will plug into PCB backplanes on either side of the insert
- Readouts are at the downstream end of the backplanes

