Machine Learning on Hadronic Calorimeter

Bishnu Karki

01/28/2023

Hadronic Calorimeter performance Simplest reconstruction ("Strawman")

- Adopted Calorimeter (both HCAL and HCAL insert) configuration from previous experiments in DD4Hep simulation
- With simplest reconstruction, reproduced the resolution from previous experiments

Exploiting calorimeter info

- Yields 5D showers (E, X, Y, Z, t)
- These information can be exploited for sophisticated reconstruction algorithms (AI)

Towards AI Driven Detector Design

Goals:

- Use Deep Neural Network to transform GEANT4 simulation into differentiable models for high-dimensional optimization
- Develop a framework for future application for various detector design

Approach:

- Use EIC detector simulation to train and surrogate model (differential)
- Use surrogate model to optimize the detector parameters
- Using hadron calorimeter simulation

Optimize using differentiable ML models: evaluate derivatives of (performance metric) wrt (detector parameters)

Energy regression with Particle Flow Network

- Pion reconstruction in ATLAS detector showed improved performance over image based description [<u>ATLAS-JETM-2022</u>]
- 4 input E, X, Y, Z (cell information) one output
- Train to predict generated energy

arxiv.1810.05165 [hep-ph]

Energy response for HCAL Insert

Vertical red line is mean position of generated energy

PFN efficient to reconstruct lower energy tail

PFN is efficient learns to reconstruct the lower energy tail

Energy response for HCAL

Next Steps:

- Train on simple segmentation
 - ✤ 3 cluster sum, based on fixed segmentation
 - Probably will have highest change in performance
- Add Transverse information of Cell
 - Cell X, and Cell Y
 - Vary fineness and find optimal cell granularity or layering
- Full Cell information
 - Probably where working with GNN or DeepSets would be most benefit
 - Given decent time resolution, adding time information would help

We believe AI can be useful in clustering in 5D

Conclusion

- Using strawman, calorimeter performance is comparable with existing experiments results
- Optimization with PFN in progress
- Energy generated in uniform log space helps in regression at lower energy scale
- Al can potentially improve the performance with 5D clustering

Thanks to M. Arratia, K. Barish, F. T. Acosta, UC, Berkeley, and LLNL group

Back up

E_{Pred}/E_{Truth} HCAL

HCAL Insert Strawman

- Particle : π^+
- Energy = Uniform [0 -100] GeV
- Constant η^{*} =3.7

Overall nice Gaussian energy response

Resolution DNN vs strawman HCAL Insert Strawman

- Particle : π^+
- Energy = Uniform [0 -100] GeV
- Constant $\eta^* = 3.7$

Energy scale DNN vs strawman

- Particle : π^+
- Energy = Uniform [0 -100] GeV

In linear scale, at lower energy value DNN is off by few percentage

Performance of Simple Deep Neural Network (DNN) HCAL Insert

DNN architecture:

- 1 input (cluster sum/sampling fraction) and 1 output
- 4 hidden layer
- 64 nodes per layer
- Mean absolute error for loss

 $Resolution = \frac{sigma}{mean}$

Particle Flow Network

Scale is energy dependent at lower energy value

HCal resolution

Energy scale is flat with 10 % off