

Kyle Devereaux¹, Wenqing Fan¹, Weiyao Ke², Kyle Lee³, Ian Moult⁴

¹Lawrence Berkeley National Laboratory

² Los Alamos National Laboratory

³ Massachusetts Institute of Technology

⁴ Yale University

Energy correlators

- > Jet-substructure observables can probe the interactions between jets and cold nuclear matter as a function of scale
 - Two-point energy correlator (energy-energy correlator):

$$\langle \mathcal{E}^n \mathcal{E}^n \rangle = \sum_{ij} \int dR_L' \left(\frac{p_{T,i} \, p_{T,j}}{p_{T,\mathrm{jet}}^2} \right)^n \delta(R_L' - R_L)$$
 angular distance
$$R_L = \sqrt{(\eta_j - \eta_i)^2 + (\phi_j - \phi_i)^2}$$

- Scale quantified by R_1 , the angular distance between jet constituents
- Higher $R_{_{\rm I}} \leftrightarrow$ earlier splitting/modification onset
- Choice of "weight power" n
- ➤ "Imaging" the nuclear structure; the formation time of the splitting is smaller than the nucleus size
- > Sensitive to only final state effects; comparing against many e+A species is powerful

$$R_L > \frac{1}{\sqrt{p_T L}}$$

Important parameters

Energy correlators dependent on several parameters:

qhat, jet p_T , jet η , nucleus size, weight power

- Probability of medium induced emissions (how strong the medium is at modifying the traversing jet) $\sim \hat{q}L^2$
 - qhat of nuclear medium
- Effective path length (how long it's in the medium)
 - Nuclear size in the nucleus rest frame $L \sim r_0 A^{1/3}$
 - Formation time of splitting $au \sim rac{1}{p_T R_L^2}$
 - Jet η in lab frame
 - larger $\eta \rightarrow$ nucleus and jet co-move \rightarrow longer path length
- Weight power

In this study we explore each of these dependencies...

eHIJING and simulating EIC conditions

- eHIJING (electron-Heavy-Ion Jet Interaction Generator) simulates jet evolution in DIS events from nuclear modification effects
 - Initial interaction modeled by PYTHIA8
 - EPPS16 nPDF input, isospin effects, EMC, (anti-)shadowing effects
 - Parton shower experiences medium modifications:
 - p_T broadening via multiple collisions with small x gluons
 - Parton splitting included
 - Hadronization
 - Benchmarked against HERMES fixed-target
- Settings used for EIC conditions
 - qhat controlled by input K-factor. K=4 ↔ qhat=0.02 GeV^2/fm
 - 10 on 100 GeV for all e+p/A species
 - 4E8 events per species, ~10⁻¹ fb luminosity
 - ep chosen as baseline

Collision Species and Energies Supported by the EIC				
Nuclei species A	e+A Beam Energies (GeV)			
proton	18 on 275	10 on 100	5 on 100	5 on 41
deuterium / 3 He / 4 He	18 on 110	10 on 110		5 on 41
C / ⁴⁰ Ca / Cu	18 on 110	10 on 110		5 on 41
Au	18 on 110	10 on 110		5 on 41

Modification observed in EEC

Calculation

$$\alpha \cdot \langle \mathcal{E}^n \mathcal{E}^n \rangle$$

Relative normalization factor α forces e+A and e+p to match at low R_{τ}

 $-1 < \eta < 1$

- Modification visible in e+A compared to e+p at default qhat
 - Enhanced at high R_L (early splitting \rightarrow inside the nucleus)
 - No modification at small at low R_L (late splitting \rightarrow outside the nucleus)
 - Onset of the modification reflects the nuclear size
 - Enhanced at higher p_T and forward η we select this bin to study
- ➤ 10⁻¹ fb luminosity EIC will have high precision for EEC measurements

 $1 < \eta < 3.5$

Jet p_T dependence

- ➤ e+Au case subtracted by e+p baseline
- Turn-on" of modification occurs when e+A deviates from e+p baseline
 - Turn-on happens at a characteristic length scale given by the formation time of the shower τ

 - Scaling the x-axis to R_L sqrt(p_T) causes the turn-ons coincide across p_T bins
- Strength of modification enhanced for higher p_T jets
- ➤ Peak maximum comes from the edge effect of using finite jet radius R=1
 - Dashed lines drawn \rightarrow sqrt(lower p_T bound) * jet R

$$\langle \mathcal{E}^n \mathcal{E}^n \rangle = \sum_{ij} \int dR_L' \left(\frac{p_{T,i} \, p_{T,j}}{p_{T,\mathrm{jet}}^2} \right)^n \delta(R_L' - R_L)$$

- Modification size varies for different weight powers n
 - Smaller n tends to give larger enhancement in at high R_1
- ➤ We use n=0.5 as it gives high modification values
- ➤ More clearly differentiates nuclei species and jet p_T

Nuclear size dependence

- Modification size different across nuclei
 - Curves ordered such that larger enhancement is seen for larger nuclei
 - Corresponds with larger effective path length
- \triangleright Scaling the x-axis by $A^{1/6}$ (RHS) causes the turn-on points to better coincide
 - $\bullet \quad \text{The onset angle is given by} \quad \theta_R \sim \frac{1}{\sqrt{EL}} \sim \frac{1}{\sqrt{p_T A^{1/3}}} \sim \frac{1}{A^{1/6} \sqrt{p_T}}$

Nuclear size dependence

- ➤ A more qualitative description of observed modification
 - Size of modification \propto peak height of LHS curve = RHS point
 - Log-log plot on RHS used to determine power of modification's relationship with atomic mass A
- > RHS plot shows a nearly linear relationship
 - Nuclear modification of jet follows power 0.25 from this fit
 - We need to investigate more what this means

Significance for the EIC

- ➤ Energy correlators will have excellent sensitivity for studying nuclear structure at the EIC
 - Energy correlators will be measured with high precision given the EIC's high luminosity
 - Modification due to cold nuclear matter effects and transport phenomena can be clearly seen
 - There is a clear nuclear size dependent trend
 - Benefits from EIC's ability to run a variety of e+A species at high luminosity