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Improved discrimination power as k — 0

Significance

Distribution narrows as k increases
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Application of jet charge to EIC physics: u versus d jet identification

Essentially no useful discrimination information exclusively in distribution of particle momenta

Jet charge is a (the only?) useful discriminant between these jets



Our Approach: Make Assumptions as Simple as Possible but No Simpler

1.

Particles (hadrons) in the jet are produced though
identical, independent processes.

. The multiplicity of particles in the jet N is large.

. The only particles are the pions: 71, 7—, and 7.

SU(2) isospin of the pions is an exact symmetry.
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Let’s calculate the mean/variance moments:
1 1
: @) = [ deplal) =
— 0

Make a central moment expansion:

1 O-g /7 1
p(z|N)—5<z—N>—|—25 (z—N>+---

Fractional moments can be expressed as:

(2%) = /OIdZZ“p(Z\N) =N—" (1+ g(m— 1)o2N? +)
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Optimal Parameter Predictions

Inclusive Jet Charge
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Optimal Parameter Predictions

" Inclusive Jet Charge
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Optimal discrimination when k and N are small
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One More Thing...

Optimal Discrimination Observable by Neyman-Pearson is Log-Likelihood:

Pu(@r, N) 0 Pu(Qx|N)P(N)
Pi(Qr,N) Pa(Qx|N)p(N)

Assuming that multiplicity distribution is identical for up and down jets (see bonus)

O = log

Just Take Ratio of Gaussian Distributions:

Not Monotonically Related to Jet Charge O,

Necessarily Improve Discrimination Power by Measuring Jet Charge Differential in Multiplicity



One More Thing...

u vs. d Log Likeihood Ratio in Pythia u vs. d Log Likeihood Ratio Prediction
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Takeaway:

Measure Jet Charge Differential in Multiplicity (and not centrality)!



Bonus
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Data / Fit
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Surprisingly little medium modification to jet charge from pp to PbPb

Aren’t gluon jets quenched more than quark jets? How large is UE effect?

Can we understand this?
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