California EIC Consortium Collaboration Meeting
$\sqrt{8}$

Collins-type Energy-Energy

Correlators and Nucleon Structures

Fanyi Zhao

University of California, Los Angeles (UCLA) Supervisor: Prof. Zhongbo Kang In collaboration with: Kang, Lee, Shao
Thanks to the support from UCOP MRPI grant !

California EIC Consortium Collaboration Meeting

Introduction

- Energy-Energy Correlators (EEC): measures the correlations of energy deposition in two detectors with opening angle χ
(one of the first infrared safe event-shapes defined in QCD)
- In $e^{+} e^{-}$annihilation:

$$
\frac{d \Sigma_{e^{+} e^{-}}}{d \cos \chi}=\sum_{i, j} \int d \sigma \frac{E_{i} E_{j}}{Q^{2}} \delta\left(\cos \theta_{i j}-\cos \chi\right)
$$

Basham, Brown, Ellis, Love `78 `79

Moult, Zhu `18

California EIC Consortium Collaboration Meeting

Introduction

- Energy-Energy Correlators (EEC): measures the correlations of energy deposition in two detectors with opening angle χ
(one of the first infrared safe event-shapes defined in QCD)
- In $e^{+} e^{-}$annihilation:

$$
\frac{d \Sigma_{e^{+} e^{-}}}{d \cos \chi}=\sum_{i, j} \int d \sigma \frac{E_{i} E_{j}}{Q^{2}} \delta\left(\cos \theta_{i j}-\cos \chi\right)
$$

Basham, Brown, Ellis, Love `78 `79

Moult, Zhu `18

1. Collinear limit $\chi \rightarrow 0$: probe jet substructure.

Dixon, Moult, Zhu, '19
Chen, Dixon, Luo, Moult, Yang, Zhang, Zhu, `19
Factorization of the two point correlator

California EIC Consortium Collaboration Meeting

Introduction

- Energy-Energy Correlators (EEC): measures the correlations of energy deposition in two detectors with opening angle χ
(one of the first infrared safe event-shapes defined in QCD)
- $\ln e^{+} e^{-}$annihilation:

$$
\frac{d \Sigma_{e^{+} e^{-}}}{d \cos \chi}=\sum_{i, j} \int d \sigma \frac{E_{i} E_{j}}{Q^{2}} \delta\left(\cos \theta_{i j}-\cos \chi\right)
$$

Moult, Zhu `18

1. Collinear limit $\chi \rightarrow 0$: probe jet substructure.
2. Back-to-back limit $\chi \rightarrow \pi$: dominated by soft/collinear radiations

California EIC Consortium Collaboration Meeting

EEC at the back-to-back limit

$\tau \in[0,1]$

$\tau \rightarrow 0$

$$
\frac{d \Sigma_{e^{+} e^{-}}}{d \cos \chi}=\sum_{i, j} \int d \sigma \frac{E_{i} E_{j}}{Q^{2}} \delta\left(\cos \theta_{i j}-\cos \chi\right)
$$

$$
\tau=\frac{1+\cos \chi}{2}, \tau \in[0,1]
$$

$\mathrm{EEC}_{e^{+} e^{-}}(\tau) \equiv \frac{1}{\sigma} \frac{d \Sigma_{e^{+} e^{-}}}{d \tau}=\frac{1}{2} \sum_{i, j} \int d \boldsymbol{q}_{T}^{2} d z_{i} d z_{j} z_{i} z_{j} \frac{1}{\sigma} \frac{d \sigma}{d \boldsymbol{q}_{T}^{2} d z_{i} d z_{j}} \delta\left(\tau-\frac{\boldsymbol{q}_{T}^{2}}{Q^{2}}\right)$
Definition

$$
\begin{gathered}
\tau=\frac{\boldsymbol{P}_{h_{1} T}^{2}}{z_{1}^{2} Q^{2}} \\
\boldsymbol{q}_{T}=-\frac{\boldsymbol{P}_{h_{1} T}}{z_{1}}
\end{gathered}
$$

California EIC Consortium Collaboration Meeting

EEC at the back-to-back limit

In the back-to-back limit $(\chi \rightarrow \pi, \tau \rightarrow 0)$:

- Related to the TMD observables.
- Unpolarized processes in both $e^{+} e^{-}$and $e p$ collisions have been studied and observed.

Definition:

$$
\mathrm{EEC}_{e^{+} e^{-}}(\tau) \equiv \frac{1}{\sigma} \frac{d \Sigma_{e^{+} e^{-}}}{d \tau}=\frac{1}{2} \sum_{i, j} \int d \boldsymbol{q}_{T}^{2} d z_{i} d z_{j} z_{i} z_{j} \frac{1}{\sigma} \frac{d \sigma}{d \boldsymbol{q}_{T}^{2} d z_{i} d z_{j}} \delta\left(\tau-\frac{\boldsymbol{q}_{T}^{2}}{Q^{2}}\right)
$$

Factorization: $\frac{d \Sigma_{e^{+} e^{-}}}{d \tau}=\frac{2 \pi N_{c} \alpha_{e \mathrm{em}}^{2}}{3 Q^{2}} \sum_{q} e_{q}^{2} \int d \boldsymbol{q}_{T}^{2} \delta\left(\tau-\frac{\boldsymbol{q}_{T}^{2}}{Q^{2}}\right) \int \frac{b d b}{2 \pi} J_{0}\left(b q_{T}\right) J_{q}\left(\boldsymbol{b}, \mu, \zeta / \nu^{2}\right) J_{\bar{q}}\left(\boldsymbol{b}, \mu, \zeta / \nu^{2}\right) S\left(\boldsymbol{b}^{2}, \mu, \nu\right)$

$$
J_{q}\left(\boldsymbol{b}, \mu, \zeta / \nu^{2}\right) \equiv \sum_{h} \int_{0}^{1} d z z \tilde{D}_{1, h / q}\left(z, \boldsymbol{b}^{2}, \mu, \zeta / \nu^{2}\right),
$$

California EIC Consortium Collaboration Meeting

EEC at the back-to-back limit

In the back-to-back limit $(\chi \rightarrow \pi, \tau \rightarrow 0)$:

- Related to the TMD observables.
- Unpolarized processes in both $e^{+} e^{-}$and $e p$
 collisions have been studied and observed.
New Definition: $\quad \operatorname{EEC}_{e^{+} e^{-}}(\tau, \phi) \equiv \frac{1}{\sigma} \frac{d \Sigma_{e^{+} e^{-}}}{d \tau d \phi}=\frac{1}{2} \sum_{i, j} \int d \boldsymbol{q}_{T}^{2} d z_{i} d z_{j} \frac{1}{\sigma} \frac{d \sigma}{d \boldsymbol{q}_{T}^{2} d z_{i} d z_{j}} \delta\left(\tau-\frac{\boldsymbol{q}_{T}^{2}}{Q^{2}}\right) \delta\left(\phi-\phi_{q_{T}}\right)$
Factorization: $\frac{d \Sigma_{e^{+} e^{-}}}{d \tau d \phi}=\frac{2 \pi N_{c} \alpha_{\mathrm{em}}^{2}}{3 Q^{2}} \sum_{q} e_{q}^{2} \int d \boldsymbol{q}_{T}^{2} \delta\left(\tau-\frac{\boldsymbol{q}_{T}^{2}}{Q^{2}}\right) \int \frac{b d b}{2 \pi}\left[J_{0}\left(b q_{T}\right) J_{q}\left(\boldsymbol{b}, \mu, \zeta / \nu^{2}\right) J_{\bar{q}}\left(\boldsymbol{b}, \mu, \zeta / \nu^{2}\right) S\left(\boldsymbol{b}^{2}, \mu, \nu\right)\right.$

$$
+\frac{b^{2}}{8} \cos 2 \phi J_{2}\left(b q_{T}\right) J_{q}^{\perp}\left(\boldsymbol{b}, \mu, \zeta / \nu^{2}\right) J_{\bar{q}}^{\perp}\left(\boldsymbol{b}, \mu, \zeta / \nu^{2}\right) S\left(\boldsymbol{b}^{2}, \mu, \nu\right),
$$

Moult, Zhu `18

$$
J_{q}\left(\boldsymbol{b}, \mu, \zeta / \nu^{2}\right) \equiv \sum_{h} \int_{0}^{1} d z z \tilde{D}_{1, h / q}\left(z, \boldsymbol{b}^{2}, \mu, \zeta / \nu^{2}\right),
$$

z-weighted sum over hadrons produced in the final states

Kang, Lee, Shao, FZ (arXiv: 2301.xxxx)

$$
\left(-\frac{i \boldsymbol{b}^{\alpha}}{2}\right) J_{q}^{\perp}\left(\boldsymbol{b}, \mu, \zeta / \nu^{2}\right) \equiv \sum_{h} \int_{0}^{1} d z z \tilde{H}_{1, h / q}^{\perp \alpha}\left(z, \boldsymbol{b}^{2}, \mu, \zeta / \nu^{2}\right)
$$

California EIC Consortium Collaboration Meeting

EEC at the back-to-back limit

Deep Inelastic
Scattering in Breit frame
SIDIS

In the back-to-back limit $(\chi \rightarrow \pi, \tau \rightarrow 0)$:

- Related to the TMD observables.
- Unpolarized processes in both $e^{+} e^{-}$and $e p$ collisions have been studied and observed.

Li, Vitev, Zhu `20 Definition: Li, Marks, Vitev `21

$$
\operatorname{EEC}_{\mathrm{DIS}}(\tau) \equiv \frac{1}{\sigma} \frac{d \Sigma_{\mathrm{DIS}}}{d \tau}=\frac{1}{2} \sum_{a} \int d \theta_{a} d z_{a} z_{a} \frac{1}{\sigma} \frac{d \sigma}{d \theta_{a p} d \phi_{a p} d z_{a}} \delta\left(\tau-\left(\frac{1+\cos \theta_{a p}}{2}\right)\right)
$$

$$
\tau=\frac{1+\cos \chi}{2}
$$

California EIC Consortium Collaboration Meeting

EEC at the back-to-back limit

Deep Inelastic
Scattering in Breit frame
SIDIS

In the back-to-back limit $(\chi \rightarrow \pi, \tau \rightarrow 0)$:

- Related to the TMD observables.
- Unpolarized processes in both $e^{+} e^{-}$and $e p$ collisions have been studied and observed.

Li, Vitev, Zhu `20

Definition:

Li, Marks, Vitev `21

$$
\operatorname{EEC}_{\mathrm{DIS}}(\tau) \equiv \frac{1}{\sigma} \frac{d \Sigma_{\mathrm{DIS}}}{d \tau}=\frac{1}{2} \sum_{a} \int d \theta_{a} d z_{a} z_{a} \frac{1}{\sigma} \frac{d \sigma}{d \theta_{a p} d \phi_{a p} d z_{a}} \delta\left(\tau-\left(\frac{1+\cos \theta_{a p}}{2}\right)\right)
$$

New Definition:

$$
\operatorname{EEC}_{\mathrm{DIS}}(\tau, \phi) \equiv \frac{1}{\sigma} \frac{d \Sigma_{\mathrm{DIS}}}{d \tau d \phi}=\frac{1}{2} \sum_{a} \int d \theta_{a} d z_{a} z_{a} \frac{1}{\sigma} \frac{d \sigma}{d \theta_{a p} d \phi_{a p} d z_{a}} \delta\left(\tau-\left(\frac{1+\cos \theta_{a p}}{2}\right)\right) \delta\left(\phi-\phi_{a p}\right)
$$

Kang, Lee, Shao, FZ
(arXiv: 2301.xxxx)
Collins-type

California EIC Consortium Collaboration Meeting

EEC at the back-to-back limit

Deep Inelastic
Scattering in Breit frame

In the back-to-back limit $(\chi \rightarrow \pi, \tau \rightarrow 0)$:

- Related to the TMD observables.
- Unpolarized processes in both $e^{+} e^{-}$and $e p$ collisions have been studied and observed.

$$
\frac{d \Sigma_{\mathrm{DIS}}}{d x d y d \tau d \phi}=\frac{2 \pi \alpha_{\mathrm{em}}^{2}}{Q^{2}} \frac{1+(1-y)^{2}}{y} \int d^{2} \boldsymbol{q}_{T} \delta\left(\tau-\frac{\boldsymbol{q}_{T}^{2}}{Q^{2}}\right) \delta\left(\phi-\phi_{q_{T}}\right) \int \frac{d b b}{2 \pi}\left\{\mathcal{F}_{U U}\right.
$$

Li, Vitev, Zhu `20 Li, Marks, Vitev `21

$$
\begin{aligned}
& +\cos \left(2 \phi_{q_{T}}\right) \frac{2(1-y)}{1+(1-y)^{2}} \mathcal{F}_{U U}^{\cos \left(2 \phi_{\left.q_{T}\right)}\right.}+S_{\|} \sin \left(2 \phi_{q_{T}}\right) \frac{2(1-y)}{1+(1-y)^{2}} \mathcal{F}_{U L}^{\sin \left(2 \phi_{q_{T}}\right)} \\
& +\left|S_{\perp}\right|\left[\sin \left(\phi_{q_{T}}-\phi_{s}\right) \mathcal{F}_{U T}^{\sin \left(\phi_{q_{T}}-\phi_{s}\right)}+\sin \left(\phi_{q_{T}}+\phi_{s}\right) \frac{2(1-y)}{1+(1-y)^{2}} \mathcal{F}_{U T}^{\sin \left(\phi_{q_{T}}+\phi_{s}\right)}\right. \\
& \left.\quad+\sin \left(3 \phi_{q_{T}}-\phi_{s}\right) \frac{2(1-y)}{1+(1-y)^{2}} \mathcal{F}_{U T}^{\sin \left(3 \phi_{q_{T}}-\phi_{s}\right)}\right] \\
& \left.+\lambda_{e}\left[S_{\|} \frac{y(2-y)}{1+(1-y)^{2}} \mathcal{F}_{L L}+\left|S_{\perp}\right| \cos \left(\phi_{q_{T}}-\phi_{s}\right) \mathcal{F}_{L T}^{\cos \left(\phi_{q_{T}}-\phi_{s}\right)}\right]\right\},
\end{aligned}
$$

Kang, Lee, Shao, FZ (arXiv: 2301.xxxx)

Collins-type
New probe for all TMDPDFs
Incoming e^{-}pol.

California EIC Consortium Collaboration Meeting

Phenomenology I: Collins asymmetry

$\mathcal{A}_{\mathrm{DIS}}^{\mathbb{S}}=\frac{2(1-y)}{1+(1-y)^{2}} \frac{\mathcal{F}_{U T}^{\sin \left(\phi_{q_{T}}+\phi_{s}\right)}}{\mathcal{F}_{U U}}$

$$
\mathcal{F}_{U T}^{\sin \left(\phi_{q_{T}}+\phi_{s}\right)} \sim h_{1} \otimes J_{q}^{\perp}
$$

$$
\mathcal{F}_{U U} \sim f_{1} \otimes J_{q}
$$

Prediction for Collins asymmetry at EIC kinematics

$$
\begin{aligned}
& \frac{d \Sigma_{\text {DIS }}}{d x d y d \tau d \phi}=\frac{2 \pi \alpha_{\mathrm{em}}^{2}}{Q^{2}} \frac{1+(1-y)^{2}}{y} \int d^{2} \boldsymbol{q}_{T} \delta\left(\tau-\frac{\boldsymbol{q}_{T}^{2}}{Q^{2}}\right) \int \frac{d b b}{2 \pi}\left\{\mathcal{F}_{U U}\right) \\
& +\cos \left(2 \phi_{q_{T}}\right) \frac{2(1-y)}{1+(1-y)^{2}} \mathcal{F}_{U U}^{\cos \left(2 \phi_{q_{T}}\right)}+S_{\|} \sin \left(2 \phi_{q_{T}}\right) \frac{2(1-y)}{1+(1-y)^{2}} \mathcal{F}_{U L}^{\sin \left(2 \phi_{q_{T}}\right)} \\
& +\left|\boldsymbol{S}_{\perp}\right|\left[\sin \left(\phi_{q_{T}}-\phi_{s}\right) \mathcal{F}_{U T}^{\sin \left(\phi_{q_{T}}-\phi_{s}\right)}+\sin \left(\phi_{q_{T}}+\phi_{s}\right) \frac{2(1-y)}{1+(1-y)^{2}} \mathcal{F}_{U T}^{\sin \left(\phi_{q_{T}}+\phi_{s}\right)}\right. \\
& \left.+\sin \left(3 \phi_{q_{T}}-\phi_{s}\right) \frac{2(1-y)}{1+(1-y)^{2}} \mathcal{F}_{U T}^{\sin \left(3 \phi_{q_{T}}-\phi_{s}\right)}\right] \\
& \left.+\lambda_{e}\left[S_{\|} \frac{y(2-y)}{1+(1-y)^{2}} \mathcal{F}_{L L}+\left|\boldsymbol{S}_{\perp}\right| \cos \left(\phi_{q_{T}}-\phi_{s}\right) \mathcal{F}_{L T}^{\cos \left(\phi_{q_{T}}-\phi_{s}\right)}\right]\right\},
\end{aligned}
$$

California EIC Consortium Collaboration Meeting

Phenomenology II: Sivers asymmetry

$$
\begin{gathered}
\mathcal{A}_{\mathrm{DIS}}^{\text {Sivers }}=\frac{\mathcal{F}_{U T}^{\sin \left(\phi_{q_{T}}-\phi_{s}\right)}}{\mathcal{F}_{U U}} \\
\mathcal{F}_{U T}^{\sin \left(\phi_{q_{T}}-\phi_{s}\right)} \sim f_{1 T}^{\perp} \otimes J_{q} \\
\mathcal{F}_{U U} \sim f_{1} \otimes J_{q}
\end{gathered}
$$

Sivers function: Echevarria, Kang, Terry ` 20

Prediction for Sivers
asymmetry at EIC kinematics

$$
\begin{aligned}
& \frac{d \Sigma_{\mathrm{DIS}}}{d x d y d \tau d \phi}=\frac{2 \pi \alpha_{\mathrm{em}}^{2}}{Q^{2}} \frac{1+(1-y)^{2}}{y} \int d^{2} \boldsymbol{q}_{T} \delta\left(\tau-\frac{\boldsymbol{q}_{T}^{2}}{Q^{2}}\right) \int \frac{d b b}{2 \pi}\left\{\mathcal{F}_{U U}\right) \\
& +\cos \left(2 \phi_{q_{T}}\right) \frac{2(1-y)}{1+(1-y)^{2}} \mathcal{F}_{U U}^{\cos \left(2 \phi_{q_{T}}\right)}+S_{\|} \sin \left(2 \phi_{q_{T}}\right) \frac{2(1-y)}{1+(1-y)^{2}} \mathcal{F}_{U L}^{\sin \left(2 \phi_{q_{T}}\right)} \\
& +\left|\boldsymbol{S}_{\perp}\right|[\underbrace{\sin \left(\phi_{q_{T}}-\phi_{s}\right) \mathcal{F}_{U T}^{\sin \left(\phi_{q_{T}}-\phi_{s}\right)}+\sin \left(\phi_{q_{T}}+\phi_{s}\right) \frac{2(1-y)}{1+(1-y)^{2}} \mathcal{F}_{U T}^{\sin \left(\phi_{q_{T}}+\phi_{s}\right)}} \\
& +\operatorname{sin(3\phi _{q_{T}}-\phi _{s})\frac {2(1-y)}{1+(1-y)^{2}}\mathcal {F}_{UT}^{\operatorname {sin}(3\phi _{q_{T}}-\phi _{s})}]} \\
& \left.+\lambda_{e}\left[S_{\|} \frac{y(2-y)}{1+(1-y)^{2}} \mathcal{F}_{L L}+\left|\boldsymbol{S}_{\perp}\right| \cos \left(\phi_{q_{T}}-\phi_{s}\right) \mathcal{F}_{L T}^{\cos \left(\phi_{q_{T}}-\phi_{s}\right)}\right]\right\}
\end{aligned}
$$

California EIC Consortium Collaboration Meeting

Summary

- EEC in the early literatures: handles only the unpolarized scattering $\left(e^{+} e^{-}\right.$ annihilation and $e p$ collisions).
- By generalizing the EEC with azimuthal angle dependence, one gets access to spindependent effects (polarized incoming p).
- We introduce a Collins-type EEC jet function \Rightarrow all the TMD PDFs, e.g. Sivers function, etc.
- Polarized beam at the future EIC: enable studies along this direction

California EIC Consortium Collaboration Meeting

Backup

California EIC Consortium Collaboration Meeting

$e^{+} e^{-}$

EEC at the back-to-back limit

$$
\begin{array}{ll}
\mathcal{A}_{e^{+} e^{-}}^{\mathbb{S} \times \mathbb{S}}=\frac{\mathrm{EEC}_{e^{+} e^{-}}(\tau, \phi) \equiv \frac{1}{\sigma} \frac{d \Sigma_{e^{+} e^{-}}}{d \tau d \phi}}{J_{q} \otimes J_{q}^{\perp} \otimes S} & =\frac{1}{2} \sum_{i, j} \int d \theta_{i j} d z_{i} d z_{j} z_{i} z_{j} \frac{1}{\sigma} \frac{d \sigma}{d \theta_{i j} d \phi_{i j} d z_{i} d z_{j}} \delta\left(\tau-\left(\frac{1+\cos \theta_{i j}}{2}\right)\right) \delta\left(\phi-\phi_{i j}\right),
\end{array}
$$

Prediction for Collins
asymmetry at Belle kinematics
$\mathrm{EEC}_{e^{+} e^{-}} \sim \sum_{q}\left[J_{q} \otimes J_{\bar{q}} \otimes S+\cos 2 \phi J_{q}^{\perp} \otimes J_{\bar{q}}^{\perp} \otimes S\right]$.

Gottfried-Jackson frame

