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© Introduction




Motivation

o Field theoretic and many-body systems are not solvable analytically

» Heavy ion collisions, neutron stars, condensed matter, cold atoms, ...

e Calculations often have to be done have to be done numerically or
approximations are used (or both)

e Standard numerical integration methods fail for oscillatory integrals
» Based on sampling according to some weight function — not applicable for
complex weights
» Improving accuracy leads to exponentially many samples needed —
computationally not feasible

o We miss methods that calculate observables from first principles!
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Schwinger-Keldysh formalism for Yang-Mills theory

Expectation values in terms of path integrals

(O[A]) = % / DAg e SelAs] / DA, DA_ e514+A-1 O(g)

o Expectation values of non-local observables in thermal equilibrium
> (O1(t)Oa(t")) = Tr [e PP O1 (1) Oa(t)]

» Only dependent on ¢ — ' due to time translation invariance

» Transport coefficients, viscosities, spectral functions, ...

Im(?) Real-time path [7ad Re(?)
» Periodic boundary conditions: 2 >
ALt =0) = ALt = —if) § %
©
> Yang-Mills action: § Cr — Sghwiqger—l(_eldysh contour
Sy = _% fC d417F£“' F:u Discretized tilted contour
—ip
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Sign problem of real-time YM theory

Complex weight function leads to the sign problem

o Real-time contour leads to complex weight function
1 .
(o14]) = / DAg e~ 55145] / DAL DA_ SA+A-T g(y)

@ Direct calculation of oscillatory integrals is not feasible

@ Numerical integration methods exponentially costly

Alternative integration methods needed

o Reweighting, Contour deformation, Analytic continuation, Taylor
expansion, Lefschetz thimbles, Complex Langevin method, ...
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Reweighting not applicable

o Ideas of reweighting:
» Split the action in imaginary Sg + iS; = —iS

» Reinterprete the observable by multiplying the phase O ~~ Qe 1

N [ Dre re™ 510, (1) Oa(t)
(O1()0:=(8)) = [ Dze—Sre~iSt

[ Dae Sre 10 (t)Os(t) [ Daxe °F
N J Dze=Sr J Dxe=Sre—isr
(01(H)O2(t)e 1) gy

<6_iSI>SR

e Enumerator and denominator can be estimated by MC

» for the SK integral the average phase vanishes identically, reweighting is
not applicable

o Assumption: (e=%1)g, # 0 (in practice sufficiently large)

» measure of how “hard” the sign problem is
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Introduction of the real Langevin method

Correspondence of Langevin and Fokker-Planck equations

Equivalence by same stationary solution: P(x,6 — 00) = exp [—S(x)]

SDE PDE
—_——f 5
dx = Kdo +dw "CEE™ 9,P(x,0) = V(V — K)P(x, ) (1)

e Langevin time 6
e Wiener increment/noies term: dw
o Drift term: K = —-V.S

o Averages of some random variable X depending on x reduces to sampling
from stochastic process

Oo+T
(X)p =~ lim —/ df X (0)

00 — 00 90
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Introduction of the complex Langevin method

Idea: Generalization of correspondence of Langevin and
Fokker-Planck equations

Complexification of degrees of freedom: M 3> x — z =x+1iy € M,
dx = K, df + dw — dyP(x,y,0) = LT P(x,y,0)
dy = K,db L=V,V,+K;)+ VK,

? dop(x,0) = LT p(x,0)
— { L.=V4(Vs+K)

Complex action leads to complex weight function p(x,6) — exp [—S(z)]

e Holomorphic drift term

e Spectrum of L. is in the left half plane and 0 is non-degenerate

@ Vanishing boundary terms for all (!) moments imply

(0) = /d;vdy(’)(m +iy)P(x,y,0 — 00) = /dmO(m)p(x,G — 00)
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Complex Langevin method for gauge fields

o CL equation for gauge fields

a . 0Svym a
aGA/,L(07$) - Z(SAfL(t,.’IJ) + nu(07x)

e Complexification of the Lie algebra su(N.,C) — sl(N,, C)

o Gaussian distributed noise term

<77f;(03 ta X)) = 07
M2 (0,t,x)mb (0, ¢, x)) = 25(0 — )6 (t — t')6 V) (x — x')3%,,,

Goal: Overcoming the sign problem
o CL bypasses the sign problem by sampling at late 0

Oo+T
(O[A]) ~ lm ~ / 40 OA(9)]

00*)00 0o
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© Problems of CL for real-time YM and their solution
@ Regularization of the discretized path integral
@ Parametrization dependent CL equation
@ Stabilization of complex Langevin
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Three major Problems of CL for real-time YM

@ Discretized path integral along Schwinger-Keldysh contour is
non-analytic w.r.t. lattice spacing

— we tilt the contour to regularize [see paper by N. Matsumoto [1]]

@ Complex contours give rise to unambiguities in the CL
formulation because of the noise correlator (Dirac delta)

— we introduce parametrization dependent CL equation

@ CL suffers from instabilities and wrong convergence issues

— stabilization techniques needed - we introduce an anisotropic kernel
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Tilted SK contour - Problem 1 v/

Path integral for Wilson action on a Minkowski time contour has an
ill-defined continuum limit! J

o Contour deformation resolves
non-analyticity

Bo — e+mﬁ07 Bs — e—mﬁs

-
2

2

=

Real-time path &+ Re(?)

% ~)

e For a SK contour we effectively tilt the £ =
real-time paths 5
E
S |Gy _ .
i < Schwinger-Keldysh contour
¢k — € w‘at,k for tk S cg+7 = Discretized tilted contour
agl — etiog, tk for tp, €€ —ip

o Order of limits is crucial:
» First a;x — 0 then a — 0.

Paul Hotzy (TU Wien) ilizi CL for RT-YM February 16



Parametrization dependent CL equation - Problem 2 v/

Parametrization dependent CL equation

Introduce curve parameter A for () leads to

. 0Sym
0p AL (0, N, X) =i + %0, \, x),
! A7 (A %) A=A(6) g

(1 (0,2, %) (8, N, X)) = 26,,6°°6(8 — 0)5(A = X)6) (x — x)

o Complex time contours leads to ambiguous noise correlator expression
(6-distribution for complex arguments)
» Ambiguities are resolved by a parametrization dependent CL formulation

t:la,b]— C, t(a) =0, () =-ip
» Noise correlator in terms of A
S(t(N) — t()\')) ~ 60X — )

@ Solution is however independent of the chosen parametrization

o Limiting cases (Minkowski and Euclidean contour) are consistent with
new formulation

Paul Hotzy (TU Wien) Stabilizing CL for RT-YM February 16, 2023



Before we come to Problem 3: Some lattice QCD...

e Link variables and plaquette variables

Us,u =~ exp [iga Ay (x+ /2)] € SU(N,) ~ SL(N,,C),
Uz o = Us yUzyp, U Ul

4D, u - T,V

e Wilson plaquette action

Sw > BuTr[Usyw —1],
¢k JX, UFEY
e Coupling constants
2Nc Qg 2NC Ezt,k
Boi = — 5 ) Bij = + 3
g® atk g- as

o Time reversibility is retained by averaged spacing (turning points of the
SK contour!)
A = (A + G p+1)/2
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Euler-Maruyama for numerical solution of the CLE

CL update step for link variables on a SK-contour

o Discretization of contour parameter
e Additional lattice spacing factors compared to common CL-step [2]

Uzt(0+€) = exp | it® je 22k éé'w + e aA’kn;)\(G) Us,(0)
a, 84|, as

Uy (0 +€) = oxp [ ite |ie22 3% o e [ o o)) ,.00)
ark 6AZ;|, Ak

e Langevin time step € — 0
e Noise ng ; is approximated by a Gaussian distribution

° \/E leads to issues in the N; — oo limit
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Problem 3: Instabilities of the CL. method

CL suffers from instabilities
o Runaway instabilities
— numerical blow-up due to excursions into the non-compact manifold
o Wrong-convergence issues

— distorted expectation values due to violation of the criterion of
correctness

Bad: We are facing both types of instabilities for YM on a SK contour
Even worse: Severity of the instabilities drastically increases with shrinking
tilt-angles — limit to SK contour difficult
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ing stabilization techniques

e Gauge cooling [3]: Exploit gauge freedom to minimize non-unitarity
measured by a functional F[U]
U = Uy, =ValUs W Viihs, FlU] > F[UY]
o Adaptive stepsize [4]: Regulate large drift terms which lead to
instabilities
B

max | K¢

€ €=¢emin | 1, |
T, 0,0 i

e Dynamical stabiliziation [5]: Penalize drift terms depending on the
local non-unitary of the configuration

K&, v K¢, = K&, +iapsM2,

M2 = b2 <Z bgbg) b= T, Ul ]
c H
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Kernel freedom of the CL. method

Field-independent kernel freedom

o Kerneled Langevin equation yields same limiting density function
Op A% (0 _ dll—\ab / oS d/fab ! b@ /
0 p,( ,1’)—2 &L MV(x7m)5Ab—(ml)+ £ uu(xvm>77u< ,l’)

o I'% (z,2') is required to be factorizable

I (z,a) /dm”l"‘w z, )T (2, ")

o Kerneled Langevins equations correspond to the same Fokker-Planck
equations (equivalence classes)

o In practice: Kernels may aggravate or mitigate instabilities
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Anisotropic kernel - Problem 3 v/

Kerneled CL update step

@ Rescaling of Langevin time for temporal and spatial d.o.f.

2
Uy t(0+€) =exp | it |ie (a’\’k> &?’W + \/E”—’kng AO) | ) Uz i(0)
as ) 34z, a,
a . 0Sw
Uzyi(0+¢€) =exp [ it" |ie e 4e \/En;f’i(@) Us.i(0)
T, |g

Empirical motivation for chosen kernel:
axk
as 6

o Noise of spatial update blows up for ay, =0 ~ 60—

e Slow down dynamics of temporal plaquettes ~~ 60— a;—f“@
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Comparision of update schemes

Commonly used CL update step [2]

ic 0Sw
dA%

+ Ven; ,.(0)

Uz,u(6+€) =exp (ita
o

New kerneled CL update step

2
)
Uy (0 +€) =exp | it |ie (a)"k> ?W + \/EGA’k Nax(0)| | Uz,t(0)
as 6A;,t 0 as ’
o l. 0Sw a
Uz,i(6+¢€) =exp | it" |ie e +Veng ;(0)| | Usi(6)
T, |g
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Great interconnection of methods - Problem 1,2,3 v/

We see great interconnection of the three proposed solutions:
e Path integral regulaization is done by contour deformation (tilting)

e Tilted contours (non-real, non-imaginary) can be dealt with by
parametrized CL formulation

o Calculation of physical observables requires a double-extrapolation
= first a; — 0, second o — 0

e Kernel systematically improves stability for smaller a;

Instabilities get worse for @« — 0 and are counteracted by
our kernel for a; — 0! J
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Numerical setup

o We simulate SU(2) gauge theory on a N; x 42 lattice

Kernel is controlled by number of temporal lattice points Ny

Inverse temperature § = 4.0, coupling constant g = 1

» We are in the deconfined phase ({|P]) # 0).

Simulations are initialized with identity matrices

e Langevin time is rescaled by the autocorrelation time
— scale for number of independent samples
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Correct expectation values of one-point functions

Trace of average spatial plaquette

14 14
— tan(a)=2.0 —— tan(a)=2.0 (GC) - — tan(a) =2.0 (GC+ (N, = 16))
%1.2 tan(a)=1.0 —— tan(a) =1.0 (GC + DS) %1-2 —— tan(a) = 1.0 (GC + I'(N, = 64))
510 tan(e) =0.5 tan(a) = 0.5 (GC + DS) 510 tan(a) = 0.5 (GC + I'(N, = 1024))
g : Euclidean g ’ Euclidean
308! 3-0-3\
© = 2
206 206
B | g
oot g 0"
Lo = ) ﬁ 502
< No kernel < Our kernel
o0 0 10 20 30 40 50 0'00 10 20 30 40 50

Langevin time: 6/T,

Langevin time: 6/T,

o Avg. spatial plaquette (considered in earlyier studies [2]):

1

o] =

1<J

1 1
NtN?’ Z g Z ERGTI‘ Ux,ij

e Existing methods not enough for stabilizing simulations
o Kernels successfully stabilizes even small tilt angles
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Expectation values from CL

Results for average spatial plaquette & via CL:

Stabilization
tan(a) techniques Ni (o)
(Euclidean) | None 16 0.6992(3)
2.0 AS, GC 16 0.6981(2)
1.0 AS, GC, DS 16 0.6858(1)
0.5 AS, GC, DS 16 0.2801(3)
2.0 AS, GC, T 16 0.6987(3)
1.0 AS, GC, T 64 0.6977(5)
0.5 AS, GC, T 1024 0.6973(8)
0.4 AS, GC, T 8192 0.6968(6)
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Systematic improvement of CL instabilities

Anisotropic kernel systematically stabilizes CL
@ Our kernel allows simulations even for max Re(t) >
o Stability is systematically improved for partial continuum limit

= Calculation of real-time observables might be feasible!

=
kS

— I'(N,=2048)

—— T(N,=4096)

— I'(N,=8192)
Euclidean

=
N

Iy
o

e Stability region grows faster then
auto-correlation time w.r.t. IV,

o
©

o
o

I
>

o Computational cost grows
linearly with Ny

Avg. spat. plaquette: 6[U]

°
N

o
o
=)

20 40 60 80 100 120 140 160
Langevin time: 6/T,

Tilt angle: tan(a) = 0.4
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Dyson-Schwinger equations

DSE for spatial plaquettes

@ Self-consistency check of link configuration

2(N2 —1) i
C — . . p— 71 ..
T <ReTr(U:c,ZJ)> - W § /sz <ReTr [(Uw,zp Uz,ip>UwﬂJ]>
@ G .
lpl#i
—— LHS: tan(a)=1.0
---- RHS: tan(a) = 1.0
C
o
=
©
3
o
(7
@
o
=
2
Rz —— LHS: tan(a) = 0.5
‘2 10.0 RHS: tan(a) = 0.5
75 \'u..,_
> B B e R RN S —
O 5o
25
0.0 No kernel: large fluctuations of RHS Our kernel: LHS and RHS coincide
0 5! 10 15 20 25 0 5 10 15 20 25
Langevin time: 6/T,, Langevin time: 6/T,,
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Localized histogram of the drift terms

Anisotropic kernel and the criterion of correctness
o We implicitly assume that K, PO decays sufficiently fast

o Localised histograms of the K, should lead to vanishing boundary terms

—— Not stabilized

10° 1 i — GC (no Kernel)
—— GC+TI(N,=16)
. . ) L _— —— GC+T(N, =64)
e Gauge cooling helps, but skirts 11| Density of non-unitary it G TN mL256)

are still present

e No skirts of histograms using our
kernel with sufficiently large Ny

ielm [Kj “]
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Conclusion & Outlook

Conclusion
e Stabilization techniques extend the applicability of CL
o We found an approach to systematically improve stability
e Anisotropic kernel enables simulations of max Re(t) > 8

~ Extrapolation to Schwinger-Keldysh contour might be possible

o What I have shown you
Average spatial plaquette
Dyson-Schwinger equations
Histograms of the drift term

What I have not shown you
Larger Wilson loops (Wyxn)
Polyakov loop
Unitarity norm
Euclidean correlators
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Teaser of our most recent results

Outlook

@ Checks of mathematical features of correlation function
Independence %
Relations of Wightman functions and Propagators

Fluctuation-dissipation relation

e Calculation of physical lattice spacing (onging)
Renormalization needed for physical observables

o Correlation functions (onging)

We carry out the double extrapolation
We are able to simulate even larger real-time extents at weak couplings

o Far-future prospect: Non-thermal quantum systems
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