RBRC Seminar

Stabilizing complex Langevin for real-time YM theory

Based on arXiv:2212.08602

Paul Hotzy in collaboration with Kirill Boguslavski and David I. Müller

Institute for Theoretical Physics, TU Wien

February 16, 2023

Doktoratskolleg Particles and Interactions

TECHNISCHE UNIVERSITÄT WIEN Vienna | Austria

Paul Hotzy (TU Wien)

Stabilizing CL for RT-YM

1 Introduction

2 Complex Langevin for gauge fields

⁽³⁾ Problems of CL for real-time YM and their solution

- Regularization of the discretized path integral
- Parametrization dependent CL equation
- Stabilization of complex Langevin

4 Results: Systematic improvement of stability

5 Conclusion & Outlook

1 Introduction

- 2 Complex Langevin for gauge fields
- 3 Problems of CL for real-time YM and their solution
 - Regularization of the discretized path integral
 - Parametrization dependent CL equation
 - Stabilization of complex Langevin
- In Results: Systematic improvement of stability

5 Conclusion & Outlook

- Field theoretic and many-body systems are not solvable analytically
 - ▶ Heavy ion collisions, neutron stars, condensed matter, cold atoms, ...
- Calculations often have to be done have to be done numerically or approximations are used (or both)
- Standard numerical integration methods fail for oscillatory integrals
 - ▶ Based on sampling according to some weight function \rightarrow not applicable for complex weights
 - \blacktriangleright Improving accuracy leads to exponentially many samples needed \rightarrow computationally not feasible
- We miss methods that calculate observables from first principles!

Schwinger-Keldysh formalism for Yang-Mills theory

Expectation values in terms of path integrals

$$\langle \mathscr{O}[A] \rangle = \frac{1}{Z} \int \mathcal{D}A_E \, e^{-S_E[A_E]} \int \mathcal{D}A_+ \, \mathcal{D}A_- \, e^{iS[A_+, A_-]} \, \mathcal{O}(x)$$

• Expectation values of non-local observables in thermal equilibrium

- $\langle \mathcal{O}_1(t)\mathcal{O}_2(t')\rangle = \operatorname{Tr}\left[e^{-\beta H}\mathcal{O}_1(t)\mathcal{O}_2(t')\right]$
- ▶ Only dependent on t t' due to time translation invariance
- ▶ Transport coefficients, viscosities, spectral functions, ...
- Periodic boundary conditions: $A^a_\mu(t=0) = A^a_\mu(t=-i\beta)$
- ► Yang-Mills action: $S_{YM} = -\frac{1}{4} \int_{\mathcal{C}} d^4 x F_a^{\mu\nu} F_{\mu\nu}^a$

Complex weight function leads to the sign problem

• Real-time contour leads to complex weight function

$$\langle \mathscr{O}[A] \rangle = \frac{1}{Z} \int \mathcal{D}A_E \, e^{-S_E[A_E]} \int \mathcal{D}A_+ \, \mathcal{D}A_- \, \mathrm{e}^{\mathrm{i}\mathbf{S}[\mathbf{A}_+, \mathbf{A}_-]} \, \mathscr{O}(x)$$

• Direct calculation of oscillatory integrals is not feasible

• Numerical integration methods exponentially costly

Alternative integration methods needed

• Reweighting, Contour deformation, Analytic continuation, Taylor expansion, Lefschetz thimbles, **Complex Langevin method**, ...

6/34

- Ideas of reweighting:
 - Split the action in imaginary $S_R + iS_I = -iS$
 - Reinterprete the observable by multiplying the phase $\mathcal{O} \rightsquigarrow \mathcal{O}e^{-iS_I}$

$$\begin{split} \langle \mathcal{O}_{1}(t)\mathcal{O}_{2}(t')\rangle &= \frac{\int \mathcal{D}x e^{-S_{R}} e^{-iS_{I}} \mathcal{O}_{1}(t)\mathcal{O}_{2}(t)}{\int \mathcal{D}x e^{-S_{R}} e^{-iS_{I}}} \\ &= \frac{\int \mathcal{D}x e^{-S_{R}} e^{-iS_{I}} \mathcal{O}_{1}(t)\mathcal{O}_{2}(t)}{\int \mathcal{D}x e^{-S_{R}}} \frac{\int \mathcal{D}x e^{-S_{R}}}{\int \mathcal{D}x e^{-S_{R}} e^{-iS_{I}}} \\ &= \frac{\langle \mathcal{O}_{1}(t)\mathcal{O}_{2}(t') e^{-iS_{I}} \rangle_{S_{R}}}{\langle e^{-iS_{I}} \rangle_{S_{R}}} \end{split}$$

- Enumerator and denominator can be estimated by MC
 - for the SK integral the average phase vanishes identically, reweighting is not applicable
- Assumption: $\langle e^{-iS_I} \rangle_{S_R} \neq 0$ (in practice sufficiently large)
 - ▶ measure of how "hard" the sign problem is

1 Introduction

2 Complex Langevin for gauge fields

3 Problems of CL for real-time YM and their solution

- Regularization of the discretized path integral
- Parametrization dependent CL equation
- Stabilization of complex Langevin

Results: Systematic improvement of stability

5 Conclusion & Outlook

8/34

Correspondence of Langevin and Fokker-Planck equations Equivalence by same stationary solution: $P(\mathbf{x}, \theta \to \infty) = \exp[-S(\mathbf{x})]$

$$\overbrace{d\mathbf{x} = \mathbf{K}d\theta + d\mathbf{w}}^{SDE} \qquad \overbrace{\text{Itô's lemma}}^{PDE} \qquad \overbrace{\partial_{\theta}P(\mathbf{x},\theta) = \nabla(\nabla - \mathbf{K})P(\mathbf{x},\theta)}^{PDE} \qquad (1)$$

- $\bullet\,$ Langevin time θ
- Wiener increment/noies term: $d\mathbf{w}$
- Drift term: $\mathbf{K} = -\nabla S$
- Averages of some random variable X depending on x reduces to sampling from stochastic process

$$\langle X \rangle_P \approx \lim_{\theta_0 \to \infty} \frac{1}{T} \int_{\theta_0}^{\theta_0 + T} d\theta \, X(\theta)$$

Introduction of the complex Langevin method

Idea: Generalization of correspondence of Langevin and Fokker-Planck equations

Complexification of degrees of freedom: $\mathcal{M} \ni \mathbf{x} \to \mathbf{z} = \mathbf{x} + i\mathbf{y} \in \mathcal{M}_c$

$$\begin{aligned} d\mathbf{x} &= \mathbf{K}_{x} d\theta + d\mathbf{w} \\ d\mathbf{y} &= \mathbf{K}_{y} d\theta \end{aligned} \bigg\} & \Longleftrightarrow \begin{cases} \partial_{\theta} P(\mathbf{x}, \mathbf{y}, \theta) = L^{T} P(\mathbf{x}, \mathbf{y}, \theta) \\ L &= \nabla_{x} (\nabla_{x} + \mathbf{K}_{x}) + \nabla_{y} \mathbf{K}_{y} \\ & \overset{?}{\longleftrightarrow} \begin{cases} \partial_{\theta} \rho(\mathbf{x}, \theta) = L_{c}^{T} \rho(\mathbf{x}, \theta) \\ L_{c} &= \nabla_{x} (\nabla_{x} + \mathbf{K}) \end{aligned}$$

Complex action leads to complex weight function $\rho(\mathbf{x}, \theta) \to \exp\left[-S(x)\right]$

- Holomorphic drift term
- Spectrum of L_c is in the left half plane and 0 is non-degenerate
- Vanishing boundary terms for all (!) moments imply

$$\langle \mathcal{O} \rangle = \int dx dy \mathcal{O}(x+iy) P(x,y,\theta \to \infty) = \int dx \mathcal{O}(x) \rho(x,\theta \to \infty)$$

Paul Hotzy (TU Wien)

Complex Langevin method for gauge fields

• CL equation for gauge fields

$$\partial_{\theta}A^{a}_{\mu}(\theta,x) = i\frac{\delta S_{\rm YM}}{\delta A^{a}_{\mu}(t,x)} + \eta^{a}_{\mu}(\theta,x)$$

- Complexification of the Lie algebra $\mathfrak{su}(N_c, \mathbb{C}) \to \mathfrak{sl}(N_c, \mathbb{C})$
- Gaussian distributed noise term

$$\langle \eta^a_{\mu}(\theta, t, \mathbf{x}) \rangle = 0,$$

$$\langle \eta^a_{\mu}(\theta, t, \mathbf{x}) \eta^b_{\nu}(\theta', t', \mathbf{x}') \rangle = 2\delta(\theta - \theta')\delta(t - t')\delta^{(d-1)}(\mathbf{x} - \mathbf{x}')\delta^{ab}\delta_{\mu\nu}$$

Goal: Overcoming the sign problem

 $\bullet\,$ CL by passes the sign problem by sampling at late θ

$$\langle \mathcal{O}[A] \rangle \approx \lim_{\theta_0 \to \infty} \frac{1}{T} \int_{\theta_0}^{\theta_0 + T} d\theta \, \mathcal{O}[A(\theta)]$$

1 Introduction

- 2 Complex Langevin for gauge fields
- ³ Problems of CL for real-time YM and their solution
 - Regularization of the discretized path integral
 - Parametrization dependent CL equation
 - Stabilization of complex Langevin

Results: Systematic improvement of stability

5 Conclusion & Outlook

Three major Problems of CL for real-time YM

• Discretized path integral along Schwinger-Keldysh contour is non-analytic w.r.t. lattice spacing

 \rightarrow we tilt the contour to regularize [see paper by N. Matsumoto [1]]

- ② Complex contours give rise to unambiguities in the CL formulation because of the noise correlator (Dirac delta)
 → we introduce parametrization dependent CL equation
- OL suffers from instabilities and wrong convergence issues
 → stabilization techniques needed we introduce an anisotropic kernel

Path integral for Wilson action on a Minkowski time contour has an ill-defined continuum limit!

• Contour deformation resolves non-analyticity

$$\beta_0 \to e^{+i\alpha}\beta_0, \quad \beta_s \to e^{-i\alpha}\beta_s$$

• For a SK contour we effectively tilt the real-time paths

$$\begin{aligned} a_{t,k} &\to e^{-i\alpha} a_{t,k} & \text{for } t_k \in \mathscr{C}^+, \\ a_{t,k} &\to e^{+i\alpha} a_{t,k} & \text{for } t_k \in \mathscr{C}^- \end{aligned}$$

• First $a_{t,k} \to 0$ then $\alpha \to 0$.

Parametrization dependent CL equation - Problem 2 \checkmark

Parametrization dependent CL equation

Introduce curve parameter λ for $t(\lambda)$ leads to

$$\begin{split} \partial_{\theta} A^{a}_{\mu}(\theta,\lambda,\mathbf{x}) &= i \left. \frac{\delta S_{\rm YM}}{\delta A^{a}_{\mu}(\lambda,\mathbf{x})} \right|_{A=A(\theta)} + \eta^{a}_{\mu}(\theta,\lambda,\mathbf{x}), \\ \langle \eta^{a}_{\mu}(\theta,\lambda,\mathbf{x}) \eta^{b}_{\nu}(\theta',\lambda',\mathbf{x}') \rangle &= 2\delta_{\mu\nu} \delta^{ab} \delta(\theta-\theta') \delta(\lambda-\lambda') \delta^{(3)}(\mathbf{x}-\mathbf{x}') \end{split}$$

- Complex time contours leads to ambiguous noise correlator expression (δ -distribution for complex arguments)
 - ▶ Ambiguities are resolved by a parametrization dependent CL formulation

 $t:[a,b]\mapsto \mathbb{C},\qquad t(a)=0,\quad t(b)=-i\beta$

▶ Noise correlator in terms of λ

$$\delta(t(\lambda) - t(\lambda')) \rightsquigarrow \delta(\lambda - \lambda')$$

- Solution is however independent of the chosen parametrization
- Limiting cases (Minkowski and Euclidean contour) are consistent with new formulation

Paul Hotzy (TU Wien)

Before we come to Problem 3: Some lattice QCD...

• Link variables and plaquette variables

$$U_{x,\mu} \simeq \exp\left[iga_{\mu}A_{\mu}\left(x+\hat{\mu}/2\right)\right] \in \mathrm{SU}(N_c) \rightsquigarrow \mathrm{SL}(N_c,\mathbb{C}),$$
$$U_{x,\mu\nu} = U_{x,\mu}U_{x+\hat{\mu},\nu}U_{x+\hat{\nu},\mu}^{-1}U_{x,\nu}^{-1}$$

• Wilson plaquette action

$$S_{\mathrm{W}}[U] = \frac{1}{2N_c} \sum_{k,\mathbf{x},\mu\neq\nu} \beta_{\mu\nu} \operatorname{Tr} \left[U_{x,\mu\nu} - 1 \right],$$

• Coupling constants

$$\beta_{0i} = -\frac{2N_c}{g^2} \frac{a_s}{a_{t,k}}, \qquad \beta_{ij} = +\frac{2N_c}{g^2} \frac{\bar{a}_{t,k}}{a_s}$$

• Time reversibility is retained by averaged spacing (turning points of the SK contour!)

$$\bar{a}_{t,k} = (a_{t,k} + a_{t,k+1})/2$$

Paul Hotzy (TU Wien)

Euler-Maruyama for numerical solution of the CLE

CL update step for link variables on a SK-contour

- Discretization of contour parameter
- Additional lattice spacing factors compared to common CL-step [2]

$$U_{x,t}(\theta + \epsilon) = \exp\left(it^{a}\left[i\epsilon\frac{\mathbf{a}_{\lambda,\mathbf{k}}}{\mathbf{a}_{s}}\frac{\delta S_{W}}{\delta\tilde{A}_{x,t}^{a}}\right|_{\theta} + \sqrt{\epsilon}\sqrt{\frac{\mathbf{a}_{\lambda,\mathbf{k}}}{\mathbf{a}_{s}}}\eta_{x,\lambda}^{a}(\theta)\right]\right)U_{x,t}(\theta)$$
$$U_{x,i}(\theta + \epsilon) = \exp\left(it^{a}\left[i\epsilon\frac{\mathbf{a}_{s}}{\bar{\mathbf{a}}_{\lambda,\mathbf{k}}}\frac{\delta S_{W}}{\delta\tilde{A}_{x,i}^{a}}\right|_{\theta} + \sqrt{\epsilon}\sqrt{\frac{\mathbf{a}_{s}}{\bar{\mathbf{a}}_{\lambda,\mathbf{k}}}}\eta_{x,i}^{a}(\theta)\right]\right)U_{x,i}(\theta)$$

- Langevin time step $\epsilon \to 0$
- Noise $\eta^a_{x,i}$ is approximated by a Gaussian distribution

•
$$\sqrt{\frac{a_s}{\bar{a}_{\lambda,k}}}$$
 leads to issues in the $N_t \to \infty$ limit

CL suffers from instabilities

- Runaway instabilities
 - \rightarrow numerical blow-up due to excursions into the non-compact manifold
- Wrong-convergence issues

 \rightarrow distorted expectation values due to violation of the criterion of correctness

Bad: We are facing both types of instabilities for YM on a SK contour *Even worse:* Severity of the instabilities drastically increases with shrinking tilt-angles \rightarrow limit to SK contour difficult

Existing stabilization techniques

• Gauge cooling [3]: Exploit gauge freedom to minimize non-unitarity measured by a functional F[U]

$$U_{x,\mu} \mapsto U_{x,\mu}^V = V_x U_{x,\mu} V_{x+\mu}^{-1}, \qquad F[U] \ge F[U^V]$$

• Adaptive stepsize [4]: Regulate large drift terms which lead to instabilities

$$\epsilon \mapsto \tilde{\epsilon} = \epsilon \min\left(1, \frac{B}{\max_{x,\mu,a} |K_{x,\mu}^a|}\right)$$

• **Dynamical stabiliziation** [5]: Penalize drift terms depending on the local non-unitary of the configuration

$$\begin{split} K^a_{x,\mu} &\mapsto \tilde{K}^a_{x,\mu} = K^a_{x,\mu} + i\alpha_{\rm DS}M^a_x, \\ M^a_x &= b^a_x \left(\sum_c b^c_x b^c_x\right), \quad b^a_x = \sum_\mu {\rm Tr}[t^a U_{x,\mu} U^\dagger_{x,\mu}] \end{split}$$

Field-independent kernel freedom

• Kerneled Langevin equation yields same limiting density function

$$\partial_{\theta}A^{a}_{\mu}(\theta,x) = i \int dx' \, \Gamma^{ab}_{\mu\nu}(x,x') \frac{\delta S}{\delta A^{b}_{\nu}(x')} + \int dx' \, \tilde{\Gamma}^{ab}_{\mu\nu}(x,x') \eta^{b}_{\nu}(\theta,x')$$

• $\Gamma^{ab}_{\mu\nu}(x,x')$ is required to be factorizable

$$\Gamma^{ab}_{\mu\nu}(x,x') = \int dx'' \,\tilde{\Gamma}^{ac}_{\mu\sigma}(x,x'') \tilde{\Gamma}^{bc}_{\nu\sigma}(x',x'')$$

- Kerneled Langevins equations correspond to the same Fokker-Planck equations (equivalence classes)
- In practice: Kernels may aggravate or mitigate instabilities

Kerneled CL update step

• Rescaling of Langevin time for temporal and spatial d.o.f.

$$U_{x,t}(\theta + \epsilon) = \exp\left(it^{a}\left[i\epsilon\left(\frac{a_{\lambda,k}}{a_{s}}\right)^{2}\frac{\delta S_{W}}{\delta\tilde{A}_{x,t}^{a}}\Big|_{\theta} + \sqrt{\epsilon}\frac{a_{\lambda,k}}{a_{s}}\eta_{x,\lambda}^{a}(\theta)\right]\right)U_{x,t}(\theta)$$
$$U_{x,i}(\theta + \epsilon) = \exp\left(it^{a}\left[i\epsilon\left.\frac{\delta S_{W}}{\delta\tilde{A}_{x,i}^{a}}\Big|_{\theta} + \sqrt{\epsilon}\eta_{x,i}^{a}(\theta)\right]\right)U_{x,i}(\theta)$$

Empirical motivation for chosen kernel:

- Noise of spatial update blows up for $a_{\lambda,k} \to 0 \quad \rightsquigarrow \quad \theta \mapsto \frac{\bar{a}_{\lambda,k}}{a_s} \theta$
- Slow down dynamics of temporal plaquettes $\rightarrow \theta \mapsto \frac{a_{\lambda,k}}{a_{\star}}\theta$

Commonly used CL update step [2]

$$U_{x,\mu}(\theta + \epsilon) = \exp\left(it^a \left[i\epsilon \left.\frac{\delta S_{\rm W}}{\delta A^a_{x,\mu}}\right|_{\theta} + \sqrt{\epsilon}\eta^a_{x,\mu}(\theta)\right]\right) U_{x,\mu}(\theta)$$

New kerneled CL update step

$$U_{x,t}(\theta + \epsilon) = \exp\left(it^{a}\left[i\epsilon\left(\frac{a_{\lambda,k}}{a_{s}}\right)^{2}\frac{\delta S_{W}}{\delta \tilde{A}_{x,t}^{a}}\bigg|_{\theta} + \sqrt{\epsilon}\frac{a_{\lambda,k}}{a_{s}}\eta_{x,\lambda}^{a}(\theta)\right]\right)U_{x,t}(\theta)$$
$$U_{x,i}(\theta + \epsilon) = \exp\left(it^{a}\left[i\epsilon\left.\frac{\delta S_{W}}{\delta \tilde{A}_{x,i}^{a}}\bigg|_{\theta} + \sqrt{\epsilon}\eta_{x,i}^{a}(\theta)\right]\right)U_{x,i}(\theta)$$

We see great interconnection of the three proposed solutions:

- Path integral regulaization is done by contour deformation (tilting)
- Tilted contours (non-real, non-imaginary) can be dealt with by parametrized CL formulation
- Calculation of physical observables requires a double-extrapolation

 \Rightarrow first $a_t \rightarrow 0$, second $\alpha \rightarrow 0$

• Kernel systematically improves stability for smaller a_t

Instabilities get worse for $\alpha \to 0$ and are counteracted by our kernel for $a_t \to 0$!

1 Introduction

- 2 Complex Langevin for gauge fields
- 3 Problems of CL for real-time YM and their solution
 - Regularization of the discretized path integral
 - Parametrization dependent CL equation
 - Stabilization of complex Langevin

4 Results: Systematic improvement of stability

5 Conclusion & Outlook

- We simulate SU(2) gauge theory on a $N_t \times 4^3$ lattice
- Kernel is controlled by number of temporal lattice points N_t
- Inverse temperature $\beta = 4.0$, coupling constant g = 1
 - We are in the deconfined phase $(\langle |P| \rangle \neq 0)$.
- Simulations are initialized with identity matrices
- Langevin time is rescaled by the autocorrelation time
 - $\rightarrow\,$ scale for number of independent samples

Correct expectation values of one-point functions

• Avg. spatial plaquette (considered in earlyier studies [2]):

$$\mathscr{O}[U] = \frac{1}{N_t N_s^3} \sum_x \frac{1}{3} \sum_{i < j} \frac{1}{N_c} \operatorname{ReTr} U_{x,ij}$$

Existing methods not enough for stabilizing simulations
Kernels successfully stabilizes even small tilt angles

Paul Hotzy (TU Wien)

Stabilizing CL for RT-YM

Results for average spatial plaquette $\mathscr O$ via CL:

$\tan(lpha)$	Stabilization techniques	N_t	$\langle \mathscr{O} angle$
(Euclidean)	None	16	0.6992(3)
2.0	AS, GC	16	0.6981(2)
1.0	AS, GC, DS	16	0.6858(1)
0.5	AS, GC, DS	16	0.2801(3)
2.0	AS, GC, Γ	16	0.6987(3)
1.0	AS, GC, Γ	64	0.6977(5)
0.5	AS, GC, Γ	1024	0.6973(8)
0.4	AS, GC, Γ	8192	0.6968(6)

Systematic improvement of CL instabilities

Anisotropic kernel systematically stabilizes CL

- Our kernel allows simulations even for $\max \operatorname{Re}(t) > \beta$
- Stability is systematically improved for partial continuum limit
 - \Rightarrow Calculation of real-time observables might be feasible!

- Stability region grows faster then auto-correlation time w.r.t. N_t
- Computational cost grows linearly with N_t

Dyson-Schwinger equations

DSE for spatial plaquettes

• Self-consistency check of link configuration

$$\frac{2(N_c^2-1)}{N_c} \left\langle \operatorname{ReTr}(U_{x,ij}) \right\rangle = \frac{i}{2N_c} \sum_{|\rho| \neq i} \beta_{i\rho} \left\langle \operatorname{ReTr}\left[(U_{x,i\rho} - U_{x,i\rho}^{-1}) U_{x,ij} \right] \right\rangle$$

Paul Hotzy (TU Wien)

Localized histogram of the drift terms

Anisotropic kernel and the criterion of correctness

- We implicitly assume that $K_y PO$ decays sufficiently fast
- Localised histograms of the K_y should lead to vanishing boundary terms

- Gauge cooling helps, but skirts are still present
- No skirts of histograms using our kernel with sufficiently large N_t

1 Introduction

- 2 Complex Langevin for gauge fields
- 3 Problems of CL for real-time YM and their solution
 - Regularization of the discretized path integral
 - Parametrization dependent CL equation
 - Stabilization of complex Langevin

I Results: Systematic improvement of stability

5 Conclusion & Outlook

Conclusion & Outlook

Conclusion

- Stabilization techniques extend the applicability of CL
- We found an approach to systematically improve stability
- Anisotropic kernel enables simulations of $\max \operatorname{Re}(t) > \beta$
 - \leadsto Extrapolation to Schwinger-Keldysh contour might be possible
- What I have shown you
 - Average spatial plaquette
 - Dyson-Schwinger equations
 - Histograms of the drift term
- $\bullet\,$ What I have not shown you
 - Larger Wilson loops $(W_{n \times n})$
 - Polyakov loop
 - Unitarity norm
 - Euclidean correlators

Teaser of our most recent results

Outlook

- Checks of mathematical features of correlation function
 - Independence $\frac{t+t'}{2}$
 - Relations of Wightman functions and Propagators
 - Fluctuation-dissipation relation
- Calculation of physical lattice spacing (onging)
 - Renormalization needed for physical observables
- Correlation functions (onging)
 - We carry out the double extrapolation
 - We are able to simulate even larger real-time extents at weak couplings
- Far-future prospect: Non-thermal quantum systems

References

- N. Matsumoto, Comment on the subtlety of defining real-time path integral in lattice gauge theories, PTEP **2022** (2022), no. 9 093B03, [arXiv:2206.00865].
- J. Berges, S. Borsanyi, D. Sexty, and I. O. Stamatescu, *Lattice simulations of real-time quantum fields*, *Phys. Rev. D* **75** (2007) 045007, [hep-lat/0609058].
- E. Seiler, D. Sexty, and I.-O. Stamatescu, Gauge cooling in complex Langevin for QCD with heavy quarks, Phys. Lett. B 723 (2013) 213-216, [arXiv:1211.3709].
- G. Aarts, F. A. James, E. Seiler, and I.-O. Stamatescu, Adaptive stepsize and instabilities in complex Langevin dynamics, Phys. Lett. B 687 (2010) 154–159, [arXiv:0912.0617].
- F. Attanasio and B. Jäger, Dynamical stabilisation of complex Langevin simulations of QCD, Eur. Phys. J. C 79 (2019), no. 1 16, [arXiv:1808.04400].