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Motivation

Field theoretic and many-body systems are not solvable analytically

▶ Heavy ion collisions, neutron stars, condensed matter, cold atoms, . . .

Calculations often have to be done have to be done numerically or
approximations are used (or both)

Standard numerical integration methods fail for oscillatory integrals
▶ Based on sampling according to some weight function → not applicable for

complex weights
▶ Improving accuracy leads to exponentially many samples needed →

computationally not feasible

We miss methods that calculate observables from first principles!
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Schwinger-Keldysh formalism for Yang-Mills theory

Expectation values in terms of path integrals

⟨O[A]⟩ = 1

Z

∫
DAE e−SE [AE ]

∫
DA+ DA− eiS[A+,A−] O(x)

Expectation values of non-local observables in thermal equilibrium
▶ ⟨O1(t)O2(t

′)⟩ = Tr
[
e−βHO1(t)O2(t

′)
]

▶ Only dependent on t− t′ due to time translation invariance

▶ Transport coefficients, viscosities, spectral functions, . . .

▶ Periodic boundary conditions:

Aa
µ(t = 0) = Aa

µ(t = −iβ)

▶ Yang-Mills action:

SYM = − 1
4

∫
C d4xFµν

a Fa
µν

Paul Hotzy (TU Wien) Stabilizing CL for RT-YM February 16, 2023 5 / 34



Sign problem of real-time YM theory

Complex weight function leads to the sign problem

Real-time contour leads to complex weight function

⟨O[A]⟩ = 1

Z

∫
DAE e−SE [AE ]

∫
DA+ DA− eiS[A+,A−] O(x)

Direct calculation of oscillatory integrals is not feasible

Numerical integration methods exponentially costly

Alternative integration methods needed

Reweighting, Contour deformation, Analytic continuation, Taylor
expansion, Lefschetz thimbles, Complex Langevin method, . . .
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Reweighting not applicable

Ideas of reweighting:
▶ Split the action in imaginary SR + iSI = −iS
▶ Reinterprete the observable by multiplying the phase O ⇝ Oe−iSI

⟨O1(t)O2(t
′)⟩ =

∫
Dxe−SRe−iSIO1(t)O2(t)∫

Dxe−SRe−iSI

=

∫
Dxe−SRe−iSIO1(t)O2(t)∫

Dxe−SR

∫
Dxe−SR∫

Dxe−SRe−iSI

=
⟨O1(t)O2(t

′)e−iSI ⟩SR

⟨e−iSI ⟩SR

Enumerator and denominator can be estimated by MC
▶ for the SK integral the average phase vanishes identically, reweighting is

not applicable

Assumption: ⟨e−iSI ⟩SR
̸= 0 (in practice sufficiently large)

▶ measure of how “hard” the sign problem is
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Introduction of the real Langevin method

Correspondence of Langevin and Fokker-Planck equations

Equivalence by same stationary solution: P (x, θ → ∞) = exp [−S(x)]

SDE︷ ︸︸ ︷
dx = Kdθ + dw

Itô’s lemma⇐⇒
PDE︷ ︸︸ ︷

∂θP (x, θ) = ∇(∇−K)P (x, θ) (1)

Langevin time θ

Wiener increment/noies term: dw

Drift term: K = −∇S

Averages of some random variable X depending on x reduces to sampling
from stochastic process

⟨X⟩P ≈ lim
θ0→∞

1

T

∫ θ0+T

θ0

dθX(θ)
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Introduction of the complex Langevin method

Idea: Generalization of correspondence of Langevin and
Fokker-Planck equations

Complexification of degrees of freedom: M ∋ x → z = x+ iy ∈ Mc

dx = Kxdθ + dw
dy = Kydθ

}
⇐⇒

{
∂θP (x,y, θ) = LTP (x,y, θ)
L = ∇x(∇x +Kx) +∇yKy

?⇐⇒
{

∂θρ(x, θ) = LT
c ρ(x, θ)

Lc = ∇x(∇x +K)

Complex action leads to complex weight function ρ(x, θ) → exp [−S(x)]

Holomorphic drift term

Spectrum of Lc is in the left half plane and 0 is non-degenerate

Vanishing boundary terms for all (!) moments imply

⟨O⟩ =
∫

dxdyO(x+ iy)P (x, y, θ → ∞) =

∫
dxO(x)ρ(x, θ → ∞)
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Complex Langevin method for gauge fields

CL equation for gauge fields

∂θA
a
µ(θ, x) = i

δSYM

δAa
µ(t, x)

+ ηaµ(θ, x)

Complexification of the Lie algebra su(Nc,C) → sl(Nc,C)
Gaussian distributed noise term

⟨ηaµ(θ, t,x)⟩ = 0,

⟨ηaµ(θ, t,x)ηbν(θ′, t′,x′)⟩ = 2δ(θ − θ′)δ(t− t′)δ(d−1)(x− x′)δabδµν

Goal: Overcoming the sign problem

CL bypasses the sign problem by sampling at late θ

⟨O[A]⟩ ≈ lim
θ0→∞

1

T

∫ θ0+T

θ0

dθO[A(θ)]
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Three major Problems of CL for real-time YM

1 Discretized path integral along Schwinger-Keldysh contour is
non-analytic w.r.t. lattice spacing

→ we tilt the contour to regularize [see paper by N. Matsumoto [1]]

2 Complex contours give rise to unambiguities in the CL
formulation because of the noise correlator (Dirac delta)

→ we introduce parametrization dependent CL equation

3 CL suffers from instabilities and wrong convergence issues

→ stabilization techniques needed - we introduce an anisotropic kernel
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Tilted SK contour - Problem 1 ✓

Path integral for Wilson action on a Minkowski time contour has an
ill-defined continuum limit!

Contour deformation resolves
non-analyticity

β0 → e+iαβ0, βs → e−iαβs

For a SK contour we effectively tilt the
real-time paths

at,k → e−iαat,k for tk ∈ C+,

at,k → e+iαat,k for tk ∈ C−

Order of limits is crucial:
▶ First at,k → 0 then α → 0.
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Parametrization dependent CL equation - Problem 2 ✓

Parametrization dependent CL equation

Introduce curve parameter λ for t(λ) leads to

∂θA
a
µ(θ, λ,x) = i

δSYM

δAa
µ(λ,x)

∣∣∣∣
A=A(θ)

+ ηaµ(θ, λ,x),

⟨ηaµ(θ, λ,x)ηbν(θ′, λ′,x′)⟩ = 2δµνδ
abδ(θ − θ′)δ(λ− λ′)δ(3)(x− x′)

Complex time contours leads to ambiguous noise correlator expression
(δ-distribution for complex arguments)

▶ Ambiguities are resolved by a parametrization dependent CL formulation

t : [a, b] 7→ C, t(a) = 0, t(b) = −iβ

▶ Noise correlator in terms of λ

δ(t(λ)− t(λ′))⇝ δ(λ− λ′)

Solution is however independent of the chosen parametrization

Limiting cases (Minkowski and Euclidean contour) are consistent with
new formulation
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Before we come to Problem 3: Some lattice QCD...

Link variables and plaquette variables

Ux,µ ≃ exp
[
igaµAµ

(
x+ µ̂/2

)]
∈ SU(Nc)⇝ SL(Nc,C),

Ux,µν = Ux,µUx+µ̂,νU
−1
x+ν̂,µU

−1
x,ν

Wilson plaquette action

SW[U ] =
1

2Nc

∑
k,x,µ̸=ν

βµνTr [Ux,µν − 1] ,

Coupling constants

β0i = −2Nc

g2
as
at,k

, βij = +
2Nc

g2
āt,k
as

Time reversibility is retained by averaged spacing (turning points of the
SK contour!)

āt,k = (at,k + at,k+1)/2
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Euler-Maruyama for numerical solution of the CLE

CL update step for link variables on a SK-contour

Discretization of contour parameter

Additional lattice spacing factors compared to common CL-step [2]

Ux,t(θ + ϵ) = exp

(
ita

[
iϵ
aλ,k
as

δSW

δÃa
x,t

∣∣∣∣∣
θ

+
√
ϵ

√
aλ,k
as

ηax,λ(θ)

])
Ux,t(θ)

Ux,i(θ + ϵ) = exp

(
ita

[
iϵ

as
āλ,k

δSW

δÃa
x,i

∣∣∣∣∣
θ

+
√
ϵ

√
as
āλ,k

ηax,i(θ)

])
Ux,i(θ)

Langevin time step ϵ → 0

Noise ηax,i is approximated by a Gaussian distribution√
as

āλ,k
leads to issues in the Nt → ∞ limit
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Problem 3: Instabilities of the CL method

CL suffers from instabilities
Runaway instabilities

→ numerical blow-up due to excursions into the non-compact manifold

Wrong-convergence issues

→ distorted expectation values due to violation of the criterion of
correctness

Bad: We are facing both types of instabilities for YM on a SK contour
Even worse: Severity of the instabilities drastically increases with shrinking
tilt-angles → limit to SK contour difficult
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Existing stabilization techniques

Gauge cooling [3]: Exploit gauge freedom to minimize non-unitarity
measured by a functional F [U ]

Ux,µ 7→ UV
x,µ = VxUx,µV

−1
x+µ, F [U ] ≥ F [UV ]

Adaptive stepsize [4]: Regulate large drift terms which lead to
instabilities

ϵ 7→ ϵ̃ = ϵmin

1,
B

max
x,µ,a

|Ka
x,µ|


Dynamical stabiliziation [5]: Penalize drift terms depending on the
local non-unitary of the configuration

Ka
x,µ 7→ K̃a

x,µ = Ka
x,µ + iαDSM

a
x ,

Ma
x = bax

(∑
c

bcxb
c
x

)
, bax =

∑
µ

Tr[taUx,µU
†
x,µ]
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Kernel freedom of the CL method

Field-independent kernel freedom

Kerneled Langevin equation yields same limiting density function

∂θA
a
µ(θ, x) = i

∫
dx′ Γab

µν(x, x
′)

δS

δAb
ν(x

′)
+

∫
dx′ Γ̃ab

µν(x, x
′)ηbν(θ, x

′)

Γab
µν(x, x

′) is required to be factorizable

Γab
µν(x, x

′) =

∫
dx′′ Γ̃ac

µσ(x, x
′′)Γ̃bc

νσ(x
′, x′′)

Kerneled Langevins equations correspond to the same Fokker-Planck
equations (equivalence classes)

In practice: Kernels may aggravate or mitigate instabilities

Paul Hotzy (TU Wien) Stabilizing CL for RT-YM February 16, 2023 20 / 34



Anisotropic kernel - Problem 3 ✓

Kerneled CL update step

Rescaling of Langevin time for temporal and spatial d.o.f.

Ux,t(θ + ϵ) = exp

(
ita

[
iϵ

(
aλ,k
as

)2
δSW

δÃa
x,t

∣∣∣∣∣
θ

+
√
ϵ
aλ,k
as

ηax,λ(θ)

])
Ux,t(θ)

Ux,i(θ + ϵ) = exp

(
ita

[
iϵ

δSW

δÃa
x,i

∣∣∣∣∣
θ

+
√
ϵηax,i(θ)

])
Ux,i(θ)

Empirical motivation for chosen kernel:

Noise of spatial update blows up for aλ,k → 0 ⇝ θ 7→ āλ,k

as
θ

Slow down dynamics of temporal plaquettes ⇝ θ 7→ aλ,k

as
θ
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Comparision of update schemes

Commonly used CL update step [2]

Ux,µ(θ + ϵ) = exp

(
ita

[
iϵ

δSW

δAa
x,µ

∣∣∣∣
θ

+
√
ϵηax,µ(θ)

])
Ux,µ(θ)

New kerneled CL update step

Ux,t(θ + ϵ) = exp

(
ita

[
iϵ

(
aλ,k
as

)2
δSW

δÃa
x,t

∣∣∣∣∣
θ

+
√
ϵ
aλ,k
as

ηax,λ(θ)

])
Ux,t(θ)

Ux,i(θ + ϵ) = exp

(
ita

[
iϵ

δSW

δÃa
x,i

∣∣∣∣∣
θ

+
√
ϵηax,i(θ)

])
Ux,i(θ)
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Great interconnection of methods - Problem 1,2,3 ✓

We see great interconnection of the three proposed solutions:

Path integral regulaization is done by contour deformation (tilting)

Tilted contours (non-real, non-imaginary) can be dealt with by
parametrized CL formulation

Calculation of physical observables requires a double-extrapolation

⇒ first at → 0, second α → 0

Kernel systematically improves stability for smaller at

Instabilities get worse for α → 0 and are counteracted by
our kernel for at → 0!
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Numerical setup

We simulate SU(2) gauge theory on a Nt × 43 lattice

Kernel is controlled by number of temporal lattice points Nt

Inverse temperature β = 4.0, coupling constant g = 1

▶ We are in the deconfined phase (⟨|P |⟩ ̸= 0).

Simulations are initialized with identity matrices

Langevin time is rescaled by the autocorrelation time

→ scale for number of independent samples
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Correct expectation values of one-point functions

Trace of average spatial plaquette
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Avg. spatial plaquette (considered in earlyier studies [2]):

O[U ] =
1

NtN3
s

∑
x

1

3

∑
i<j

1

Nc
ReTrUx,ij

Existing methods not enough for stabilizing simulations

Kernels successfully stabilizes even small tilt angles
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Expectation values from CL

Results for average spatial plaquette O via CL:

tan(α)
Stabilization
techniques

Nt ⟨O⟩

(Euclidean) None 16 0.6992(3)

2.0 AS, GC 16 0.6981(2)
1.0 AS, GC, DS 16 0.6858(1)
0.5 AS, GC, DS 16 0.2801(3)

2.0 AS, GC, Γ 16 0.6987(3)
1.0 AS, GC, Γ 64 0.6977(5)
0.5 AS, GC, Γ 1024 0.6973(8)
0.4 AS, GC, Γ 8192 0.6968(6)
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Systematic improvement of CL instabilities

Anisotropic kernel systematically stabilizes CL

Our kernel allows simulations even for maxRe(t) > β

Stability is systematically improved for partial continuum limit

⇒ Calculation of real-time observables might be feasible!

Stability region grows faster then
auto-correlation time w.r.t. Nt

Computational cost grows
linearly with Nt
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Dyson-Schwinger equations

DSE for spatial plaquettes

Self-consistency check of link configuration

2(N2
c − 1)

Nc
⟨ReTr(Ux,ij)⟩ =

i

2Nc

∑
|ρ|≠i

βiρ

〈
ReTr

[
(Ux,iρ − U−1

x,iρ)Ux,ij

]〉
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Localized histogram of the drift terms

Anisotropic kernel and the criterion of correctness

We implicitly assume that KyPO decays sufficiently fast

Localised histograms of the Ky should lead to vanishing boundary terms

Gauge cooling helps, but skirts
are still present

No skirts of histograms using our
kernel with sufficiently large Nt
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Conclusion & Outlook

Conclusion
Stabilization techniques extend the applicability of CL

We found an approach to systematically improve stability

Anisotropic kernel enables simulations of maxRe(t) > β

⇝ Extrapolation to Schwinger-Keldysh contour might be possible

What I have shown you
▶ Average spatial plaquette
▶ Dyson-Schwinger equations
▶ Histograms of the drift term

What I have not shown you
▶ Larger Wilson loops (Wn×n)
▶ Polyakov loop
▶ Unitarity norm
▶ Euclidean correlators
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Teaser of our most recent results

Outlook
Checks of mathematical features of correlation function

▶ Independence t+t′

2
▶ Relations of Wightman functions and Propagators
▶ Fluctuation-dissipation relation

Calculation of physical lattice spacing (onging)
▶ Renormalization needed for physical observables

Correlation functions (onging)
▶ We carry out the double extrapolation
▶ We are able to simulate even larger real-time extents at weak couplings

Far-future prospect: Non-thermal quantum systems
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