Probe QCD matters using heavy flavor quarks at the LHC with CMS experiment

Yousen Zhang

Rice University

Thursday, February 16, 2023

Particle physics seminar @BNL

Quantum chromodynamics

• Partons are confined in hadrons

• Asymptotic freedom

The Nobel Prize in Physics 2004

Standard Model of Elementary Particles

Running coupling strength

QCD Diagram

QGP in laboratory

• QGP can be created in relativistic heavy-ion collisions

FIGURE 1

Layout of the CERN accelerators. Heavy ion running involves the new injector (Fig. 2), Linac 1, the Booster (PSB), the PS and SPS which extracts to the West and North (not shown) experimental areas.

New State of Matter created at CERN

10 FEBRUARY, 2000

Geneva, 10 February 2000. At a special seminar on 10 February, spokespersons from the experiments on CERN¹'s Heavy Ion programme presented compelling evidence for the existence of a new state of matter in which quarks, instead of being bound up into more complex particles such as protons and neutrons, are liberated to roam freely.

Macroscopic properties of QGP

- Strongly coupled QGP and perfect liquid
- Smallest specific shear viscosity ever seen

RHIC Scientists Serve Up 'Perfect' Liquid

New state of matter more remarkable than predicted - raising many new questions

April 18, 2005

TAMPA, FL – The four detector groups conducting research at the <u>Relativistic Heavy Ion Collider</u> (RHIC) – a giant atom "smasher" located at the U.S. Department of Energy's Brookhaven National Laboratory – say they've created a new state of hot, dense matter out of the quarks and gluons that are the basic particles of atomic nuclei, but it is a state quite different and even more remarkable than had been predicted. In peer-reviewed papers summarizing the first three years of RHIC findings, the scientists say that instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions appears to be more like a *liquid*.

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}^{3}\mathbf{p}} = \frac{1}{2\pi} \frac{\mathrm{d}^{2}N}{p_{\mathrm{t}}\mathrm{d}p_{\mathrm{t}}\mathrm{d}y} \left(1 + 2\sum_{n=1}^{\infty} v_{n} \cos[n(\varphi - \Psi_{\mathrm{RP}})]\right)$$

FIG. 4. Elliptic flow as a function of transverse momentum for minimum bias events.

Hydrodynamics and elliptic flow

- Soft processes between QGP constituents
- Hydrodynamic view
 - expansion is driven by the pressure gradient
 - Momentum flow $p_x > p_y \rightarrow v_2 > 0$

Elliptic Flow in Au+Au Collisions at $\sqrt{s_{
m NN}}=130\,{
m GeV}$

$$v_2 = \langle \cos\left[2(\phi - \Psi_{RP})\right] \rangle = \langle \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2} \rangle$$
$$E\frac{\mathrm{d}^3 N}{\mathrm{d}^3 \mathbf{p}} = \frac{1}{2\pi} \frac{\mathrm{d}^2 N}{p_{\mathrm{t}} \mathrm{d} p_{\mathrm{t}} \mathrm{d} y} \left(1 + 2\sum_{n=1}^{\infty} v_n \cos[n(\varphi - \Psi_{\mathrm{RP}})]\right)$$

FIG. 4. Elliptic flow as a function of transverse momentum for minimum bias events.

K. H. Ackermann *et al.* (STAR Collaboration) Phys. Rev. Lett. **86**, 402 – Published 15 January 2001

NCQ scaling and v_2

- Close partons join together, Number of Constituent Quark scaling
 - Coalescence processes are visible at mediate \textbf{p}_{T}

$$egin{array}{ll} rac{dN_B}{d^2p_{\perp}}(ec{p}_{\perp}) &= C_B(p_{\perp}) \left[rac{dN_q}{d^2p_{\perp}}(ec{p}_{\perp}/3)
ight]^3 \ rac{dN_M}{d^2p_{\perp}}(ec{p}_{\perp}) &= C_M(p_{\perp}) \left[rac{dN_q}{d^2p_{\perp}}(ec{p}_{\perp}/2)
ight]^2 \ v_{2,M}(p_{\perp}) pprox 2v_{2,q}(rac{p_{\perp}}{2}) \ v_{2,B}(p_{\perp}) pprox 3v_{2,q}(rac{p_{\perp}}{3}) \end{array}$$

Phys.Rev.Lett. 91 (2003) 092301

Probe microscopic properties of QGP

- Probe structure in protons
 - Proton is long-lived \bigcirc

Credit: DESY

- Probe structure in QGP
 - QGP is short lived(<10fm/c) 🙁
 - Jets and heavy flavor quarks at the initial stage

Jet quenching and v_2

Heavy flavor quarks in QGP

- Early productions in collisions
- Sensitive in full phase space
 - Brownian motions
 - Radiative energy losses

Opportunities of heavy flavor quarks

- Heavy flavor quarks strongly coupled with QGP!
 - Suffer energy loss in heavy ion collisions

Phys. Rev. C 99, 034908 (2019) STAR Au+Au $\sqrt{s_{_{NN}}}$ = 200 GeV D⁰ $\circ \Lambda$ Anisotropy Parameter, v₂ 10-40% $\Delta \Xi$ ⊔Ks 0.2 0.1 a) 2 3 5 6 n p_(GeV/c) Anisotropy Parameter, $v_2^{-1} n_q$ STAR Au+Au $\sqrt{s_{NN}}$ = 200 GeV \mathbf{D}^{0} ΟΛ 10-40% ΔΞ 0.1 4 0.05 b) 2.5 0 0.5 1.5 2 $(m_{T} - m_{0}) / n_{a} (GeV/c^{2})$

CMS Experiment at LHC, CERN Data recorded: Mon Nov 8 11:30:53 2010 CEST Run/Event: 150431 / 630470 Lumi section: 173

CMS Experiment at the LHC, CERN Data recorded: 2018-Nov-12 07:42:20.004864 GMT Run / Event / LS: 326585 / 66210189 / 195

A few remarks on theory

- Heavy quarks
 - Suffers collisional energy loss at small p_T
 - Suffers radiative energy loss at large $p_{\rm T}$

Charm elliptic flow at LHC

• No model can describe data in full p_{T} range

$$\ll 2' \gg = \ll e^{i2(\varphi(D^0)_1 - \varphi^{ref_2})} \gg$$

PLB 816 (2021) 136253

The fluctuations of energy losses

Explore the energy loss with fluctuations

• $v_2 = k \epsilon_2$ where ϵ_2 is the eccentricity of the collision geometry

• Multiparticle correlations are sensitive to ϵ_2 ,

$$v_2{4}^2 \approx v_2^2 - \sigma^2$$

 $v_2{2}^2 \approx v_2^2 + \sigma^2$

 $=\frac{\epsilon_2^{\{4\}}}{\epsilon_2^{\{2\}}}$

The fluctuations of elliptic flow

• Initial ϵ_2 fluctuations vs. final state (in-medium) k fluctuations?

Multi-particle correlations

- First time to measure charm v₂ using multiple particle correlator
- Correlator

• Cumulant and v₂ PRC 83 (2011) 044913

•
$$c_2\{2\} = \ll 2 \gg$$

•
$$d_2{2} = \ll 2' \gg$$

• $v_2{2} = d_2{2}/\sqrt{c_2{2}}$

•
$$c_2{4} = \ll 4 \gg -2 \ll 2 \gg ^2$$

• $d_2{4} = \ll 4' \gg -2 \ll 2 \gg \ll 2' \gg$
• $v_2{4} = -\frac{d_2{4}}{(-c_2{4})^{3/4}}$

• v_2 {4} and v_2 {2} can be calculated from these correlator

Multiparticle correlations

v₂ extraction of D mesons

- D⁰ reconstruction
 - $D^0 \rightarrow K^- \pi^+$
- Correlate D^o with reference particles
- Signal extraction

v₂ extraction of D mesons

- D⁰ reconstruction • $D^0 \rightarrow K^- \pi^+$
- Correlate D⁰ with reference particles
- Signal extraction

v₂ extraction of D mesons

- D⁰ reconstruction • $D^0 \rightarrow K^- \pi^+$
- Correlate D⁰ with reference particles
- Signal extraction

 $\alpha(m_{\rm inv}) = \frac{\text{Signal}(m_{\rm inv}) + \text{Swap}(m_{\rm inv}) + K^+K^-(m_{\rm inv}) + \pi^+\pi^-(m_{\rm inv})}{\text{Signal}(m_{\rm inv}) + \text{Swap}(m_{\rm inv}) + K^+K^-(m_{\rm inv}) + \pi^+\pi^-(m_{\rm inv}) + \text{Bkg}(m_{\rm inv})}$ $v_2^{\rm sig+bkg}(m_{\rm inv}) = v_2^{\rm sig} \times \alpha(m_{\rm inv}) + v_2^{\rm bkg}(m_{\rm inv})(1 - \alpha(m_{\rm inv}))$

v_{2} {4} for charm quarks

• Expected ordering between v_2 {2} and v_2 {4}, v_2 {4} < v_2 {2}

v₂{4} for charm quarks

- The fluctuations of D⁰ is comparable with charged particles
- Fluctuations are from ϵ_2 dominately

Comparisons with models

• Both Langevin processes and the processes of radiational energy loss describe the tendency but not quantitatively

System size scan

- v₂{4}/v₂{2} for charm sectors
 ~ charged particles as
 constant
- fluctuations almost from initial geometry

System size scan

System size scan

- Both energy loss mechanisms describe the tendency
- Models cannot describe the data quantitatively

a

M

Low p_{T}

Striking ridge in high multiplicity events

- Long range correlations in large collisional systems
- Even hold true in high multiplicity small collisions!

Debates on origin of flow

- A small QGP droplet created in-medium and final state effects
 - Applicability: Relative system size $\frac{L}{\lambda_{m.f.p.}} \gg 1$
- Alternative explanations for collectivity:
 - Correlations established prior to collisions initial state effects

Small nucleon, low temperature (low energy density)

Small nucleon, high density

CGC

2/16/2023

Large nuclei

Explore the system size

Novel probe using heavy flavor quarks

- Heavy quarks are sensitive to
 - Initial conditions
 - System evolution

Pb

• Relative system size $\lambda_{m.f.p.}/L$ scan $\lambda_{m.f.p.}^{Q} \gg \lambda_{m.f.p.}^{q}$

р

ΗF

• Prompt D⁰ (cū)

• Prompt D⁰ (cū)

• Prompt D⁰ (cū)

40

• Collectivity from \bar{u} in D⁰ ($c\bar{u}$)? Study the flow of prompt J/ ψ ($c\bar{c}$)

Bottom flow in pPb?

- Mean free path b > c
- Pushing relative size even smaller

b flow in pPb collisions

- Nonprompt D⁰ originates form b hadron
- Distinguish prompt and nonprompt D⁰ by DCA distribution

b flow in pPb collisions

- Evaluate $V_{2\Delta}^{signal}$ in each integrated DCA bin with two particle correlation function
- Extrapolate signal with linear fit
- v₂ obtained from using charged particles as reference

b flow in pPb collisions

- Evaluate in each integrated DCA
- Extrapolate signal with linear fit
- v₂ obtained from using charged

0.2

CMS

0.01

0.005

 $V^{\rm S}_{2\Delta}$

Flow for bottom hadrons

- Fist time in pPb collisions vanishing v₂ for b hadrons via non-prompt D⁰
- Indication of flavor hierarchy between charm and bottom hadrons at low p_T

Flow for bottom hadrons

- Fist time in pPb collisions vanishing v₂ for b hadrons via non-prompt D⁰
- Indication of flavor hierarchy between charm and bottom hadrons at low p_T

Elliptic flow for heavy flavor hadrons

Comparisons with models

- Comparisons with CGC calculations – show consistency within large uncertainties
- Precision measurements in the future – HL-LHC

Towards small systems

- First measurement of prompt D⁰ v₂ in high multiplicity pp collisions
- Indication of positive v_2 signal at 2 < p_T < 4 GeV
- v₂ of prompt D⁰ comparable with that of light hadrons

р ()

р

Pb

р

Comprehensive system scan

- Positive charm v₂ is observed in high multiplicity events
- Non-zero v₂ of prompt D⁰ mesons diminish towards low-multiplicity regimes
- $v_2(pp) \sim v_2(pPb)$ given multiplicity

p **(**

0

р

Pb

р

Hadron chemistry in small systems

- Thermal effects in small systems?
 - Large enhancement of baryon-to-meson ratios for strangeness
 - Similar for charm sectors?

Future opportunities of heavy ion physics

Run3 and beyond

Run 2	Run 3, ALICE 2	LS3, Upgrade	Run 4, CMS Phase 2	Run 5 (ALICE 3)
2015 – 2018	2022 – 2025	2026 – 2028	2029 – 2032	2033 – 2038

Collisions	Run2	Run3	Run4
Pb-Pb	2.2/nb	7/nb	7/nb
p-Pb	0.186/pb	0.5/pb	0.5/pb

Opportunities

- Higher luminosity
- Detector upgrade

CMS Phase II upgrade

- Trigger and readout
 - L1 bandwidth: 100 kHz \rightarrow 750 kHz
 - DAQ readout: 6GB/s \rightarrow 51 GB/s
- High granularity Calorimeter
 - High granularity endcap with 5D info
- Tracker
 - Extend $|\eta|$ from 2.4 to 4
 - pixel size: $100x150 \text{ um}^2 \rightarrow 50x50 \text{ um}^2$
 - Potential tracking trigger in hardware
- MIP timing detector
 - Entirely new, resolution ~35ps
 - Large coverage, |η|<3

MIP timing detector

- MTD
 - Barrel timing layer
 - Endcap timing layer

• **PID**
$$\Delta t = \frac{L}{c} \left(\frac{1}{\beta_1} - \frac{1}{\beta_2} \right)$$

Experiment	r	$\sigma_{\rm T}$	$r/\sigma_{\rm T}$ (×100)
	(m)	(ps)	$(m \times ps^{-1})$
STAR-TOF	2.2	80	2.75
ALICE-TOF	3.7	56	6.6
CMS-MTD	1.16	30	3.87

• Benefit

- PU mitigations
- Search for long-lived particles
- •
- Heavy-ion physics

Barrel timing layer

- Barrel timing layer (BTL)
 - Fast rise time
 - Large coverage area
- General
 - LYSO bars + SiPM readout
 - |η|<1.45
 - Inner radius: 1148 mm (40mm tł
 - Length: +/- 2.6 m along z
 - Surface ~38 m²; 332k channels

¹⁶x1 array of crystal bar

Endcap timing layer

- Endcap timing layer (ETL)
 - Good radiation tolerance
 - Low occupancy
 - High timing resolution
- General
 - Si with internal gain (LGAD)
 - $1.6 < |\eta| < 3.0$
 - Radius: 315 < R < 1200 mm
 - Position in z: +/-3.0 m (45 mm thick)
 - Surface ~14 m²; ~8.5M channels

LGAD sensors on PCB

CMS-MTD and particle identification

- Wide coverage up to <u>6 units</u> of rapidity
- π/K separation up to 3 GeV
- K/p separation up to 5 GeV

Projections for Λ_c^{+}

• Reconstruct Λ_c^+ in forward rapidity with ETL

Coalescence effects of charm hadrons

- Access full p_T range of Λ_c^+ with MTD
 - Total charm cross section
 - CMS unique access over a rapidity range of <u>up to 6 (4) units in MB (central)</u> events

Coalescence effects of charm hadrons

- Precision measurements down to low p_{τ} with MTD
- Number of constituent quark scaling $-v_2(\Lambda_c^+)/v_2(D^0) = 3/2?$

