

ePIC Track Reconstruction Status

Shujie Li Berkeley Lab

ePIC General Meeting Feb 10, 2023

Calorimeter Clustering	Chao Peng cpeng@anl.gov
Jet Reconstruction	Derek Anderson dmawxc@iastate.edu
PID	Christopher Dilks dilks@jlab.org
Tracking	Shujie Li shujieli@lbl.gov
ElCrecon	Dmitry Romanov romanov@jlab.org
Modular Reconstruction	David Lawrence <u>davidl@jlab.org</u>
Simulation Production	Wouter Deconinck wouter.deconinck@umanitoba.ca

Dmitry Kalinkin dmitry.kalinkin@gmail.com

track recon task force meeting (the previous EIC-ACTS meeting): 7am PT on Thursdays https://indico.bnl.gov/category/463/ mailing list: https://lists.bnl.gov/mailman/listinfo/eic-pro jdet-trk-recon-l Joosten

Next simulation campaign:

• Target date: End of March.

tbd

• **Goal**: Improved software stack for the reconstruction, including benchmarks.

See <u>https://indico.bnl.gov/event/18274/#1-announcement</u> for details

Track Reconstruction in ElCrecon

Full diagram at https://eic.github.io/EICrecon/#/design/tracking?id=full-diagram

Space Point Formation

Simplified geometry in ACTS: detector **volumes** \rightarrow representing **surfaces**

- Global / local coord. transformation
- Associate hits to surfaces

z

- Raw hit positions are used, no clusterization
- ACTS "on surface" check for B0 tracker, see <u>Sakib Rahman's work</u>

Track Finding/Fitting with ACTS

Combinatorial Kalman Filter (CKF)

- combine track finding and fitting
- allows track branching
 - \rightarrow user-defined measurement selector (number, chi2)
- high efficiency
- Need a reasonable "initial guess"

Initial Guess for CKF: 1. truth seeding

params(Acts::eBoundLoc0) = 0.0 * mm; // cylinder radius params(Acts::eBoundLoc1) = 0.0 * mm; // cylinder length params(Acts::eBoundPhi) = phi; params(Acts::eBoundTheta) = theta; params(Acts::eBoundQOverP) = charge / (pinit * GeV); params(Acts::eBoundTime) = part->getTime() * ns;

https://github.com/eic/EICrecon/blob/main/src/algorithms/tracking/TrackParamTruthInit.cc

Initial Guess for CKF: 1. truth seeding

Tracking performance check with single pion events. See <u>Wenging Fan's work</u>

Initial Guess for CKF: 1. truth seeding

Solutions to the "unphysical behavior" at low momentum:

Short term: add artificial smearing to init parameters. See <u>Shyam Kumar's work</u>

- address the immediate concern of the reconstruction performance at low p from physics WG
- no clear guidance to a "reasonable" smearing

Long term: use realistic init parameters from seeding

- use smearing parameters from realistic seeding study
- switch to realistic seeding completely

Seeder: a set of three space points to estimate initial track parameters

- Binned seeder: loop over φ-z binning to try all combinations. Slow at large η
 - tested and bugs fixed. See <u>YueShi Lai's</u> <u>work</u>
- **Orthogonal seed finder**: can efficiently search for space points within a given range.
 - Initial implementation in ElCrecon Joe Osborn
 - Seeder configuration:
 - default parameters from binned seeder
 - parameter optimization See <u>Rey</u> <u>Cruz-Torres's work</u>
 - Seeder confirmation/filter

Parameter	Description
bFieldInZ	z component of magnetic field
rMax	Maximum r value to look for seeds
rMin	Minimum r value to look for seeds
zMin	Minimum z value to look for seeds
zMax	Maximum z value to look for seeds
beamPosX	Beam offset in x
beamPosY	Beam offset in y
deltaRMinTopSP	Min distance in r between middle and top SP in one seed
eltaRMinBottomSP	Min distance in r between middle and bottom SP in one seed
deltaRMaxTopSP	Max distance in r between middle and top SP in one seed
ItaRMaxBottomSP	Max distance in r between middle and top SP in one seed
ollisionRegionMin	Min z for primary vertex
ollisionRegionMax	Max z for primary vertex
cotThetaMax	Cotangent of max theta angle
minPt	Min transverse momentum
naxSeedsPerSpM	Max number of seeds a single middle space point can belong to - 1
sigmaScattering	How many standard devs of scattering angles to consider
adLengthPerSeed	Average radiation lengths of material on the length of a seed

Seeder Configuration

Example of parameter tuning. Use loose settings to obtain seeds for entire eta range despite of high chance to have duplicated seeds. **Ongoing** work of Rey

Efficiency after changing deltaRminSP

ACTS 21.1

Seed Confirmation/Filter

Individual filter settings for each geometry region.

- Experience from ATLAS-ITK , see Luis Falda Coelho's work
- implementation in ElCrecon, **TBD** Rey, Barak Schmookler

seedConfMaxZOrigin=150.0 * u.mm,

```
minImpactSeedConf=1.0 * u.mm,
```

Supply realistic init parameters to CKF

- CKF with realistic seeding in addition to truth seeding. See <u>Barak's work</u>
 - retain data structure for current downstream analysis
- Switch between truth / realistic seeding. TBD. See Dmitry's work

12

Track Info in Output

- Track parameters from fit Done
- Track projection Done
- Trajectory info (chi2, number of hits ...)
 - save to histograms with EICrecon plugins:
 - plugin from Nicolas Schmidt https://github.com/eic/EICrecon/blob/angular_st udies_tof/src/benchmarks/reconstruction/trackin g_studies/tracking_studiesProcessor.cc
 - plugin from Barak <u>https://github.com/eic/EICrecon/tree/track-qa-b</u> <u>arak/src/tests/track_qa</u>
 - see also <u>Beatrice Liang-Gilman's study</u> on number of track hits and chi2 (ongoing)

Track Info in Output

- Track parameters from fit Done
- Track projection Done
- Trajectory info (chi2, number of hits ...)
 - save to histograms with ElCrecon plugins Ο
 - save to output rootfile: 0
 - **TBD**: write an ElCrecon factory to write trajectory info into data structure

eicd::Trajectory:

- uint32_t

- uint32_t

- uint32_t - uint32 t

- uint32_t

VectorMembers: - float

OneToOneRelations:

– float

– float - uint32 t

Members: - uint32_t

Author: "S. Joosten, S. Li"

type

ndf

nStates

TBD: Hits associated with tracks

struct TrajectoryState { size_t nStates = 0; size_t nMeasurements = 0; size t nOutliers = 0; size t nHoles = 0; double objocum - A. trajectory info from ACTS
mentChi2 = {}; std::vector<double> outlierChi2 = {}; size t NDF = 0; std::vector<unsigned int> measurementVolume = {}; std::vector<unsigned int> measurementLayer = {}; std::vector<unsigned int> outlierVolume = {}; std::vector<unsigned int> outlierLayer = {}; size t nSharedHits = 0; }; Description: "Raw trajector, from the tracking algorithm" // 0 (does not have good track fit), 1 (has good track fit) // Number of tracking steps // Number of hits used nMeasurements nOutliers // Number of hits not considered data structure for EICrecon^{hits} // Number of degrees of freedom nSharedHits // Number of shared hits with other trajectories measurementChi2 // Chi2 for each of the measurements outlierChi2 // Chi2 for each of the outliers - eicd::TrackParameters trackParameters // Associated track parameters, if any

- OneToManyRelations:
 - eicd::TrackerHit measurementHits // Measurement hits used in this trajectory
 - eicd::TrackerHit outlierHits // Outlier hits not used in this trajectory

Track Recon Validation Plots

tracking performance:

- momentum resolution,
- DCA_2D resolutions,
- polar angle resolution (at vertex and the various PID detector),
- azimuthal angle resolution (at vertex and the various PID detector)

tracking hits information:

- hit at generation level,
- hit at reconstruction level.
- *hit locations (x,y,z) associated with tracks*

tracking quality variables (truth + realistic seeding):

- chi^2 (total, per DOF),
- No. of hits of the reconstructed tracks
- No. of trajectories per event
- No. of seeders (for realistic seeding)

Proposed by tracking WG, Matt Posik, and LBL group. To be discussed with software/computing WG.

Summary

- Tracker in Acts geometry:
 - central tracker in good shape. B0 tracker needs to be integrated
- Track reconstruction:
 - recon with truth info works well except at low momentum. Parameters need to be smeared.
 - realistic seeder needs to be tuned.
- Track recon quality check:
 - some tracking info is accessible via ElCrecon plugins but not in rootfiles
 - need to include validation plots in benchmark tests.

Thank You

Thank You