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Reminder: ALPIDE Principle of Operation
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Continuous Mode: long “strobes” (~5-20us), followed by short inter-strobe periods (100 ns) for readout
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ALPIDE Readout Block Diagram
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ALICE ITS Readout
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Stitched backbone busses and fast serial outpu@%

ITS3 Letter of Intent
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Half Layer O M
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60 Sensitive Units

Non sensitive peripheral regions:
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Remark on timing

Projections for timing resolution

Targeting figures similar to ALPIDE
Continuous mode readout
Integration period: 5/ 10 / 20 us
Frame rate: 200 / / 50 kHz

Low power constrains response speed
MOSS pulse duration @ 1 ke
MOSS time walk ~3.3 us
Reviewing timing specs for next design

Discriminator time window

Discriminator time window

(MOSS, nominal bias
for low power)
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A few private remarks from one of the ITS-3 chip designers

« Overallreadout scheme considered for ITS-3 similar to ALPIDE
- Global strobe signal, in-pixel latching logic, transfer of hits using topological priority encoder
- In-pixel memory not yet defined
- Looking into latching the discriminated hit using rising edge of discriminator in coincidence with strobe assertion

« Strobe programmability will be Tus -> 100 us, duration from O(200ns) to the period
e Considering time-walk and readout scheme, best achievable timing resolution O(3us) for ITS-3

« No sophisticated clustering or other processing, likely only similar to ALPIDE combining neighboring
pixels in readout

« Don’'t see a path to significantly improved timing resolution in ITS3 vs ALPIDE without relaxing power
constraints, area constraints, and granularity

- Intrinsic pixel sensor timing resolution OK, but collection, maintaining, and transmission at far distances not
possible to reach anywhere near 100ns for very large arrays of small pixels; seen as a system design problem

- Doubtful to achieve a gain of 1-2 orders of magnitude in fiming without orders of magnitude more power and @
good fraction of non-sensitive areas on the chips
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ITS3 present design

ALICE ITS3 w
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EPIC Vertex and Sagitta Layers
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Note: these are active lengths; they do not include the periphery
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LO, LT and L2 lengths are single sensors that are 270 mm long (9 reticles)

L3 length can be achieved using two sensors 270 mm long (9 reticles), or three sensors 1280 mm long (6 reticles)
Choice of two or three sensors may be decided by sensor yield

L4 length can be achieved using four sensors 210 mm long (7 reticles)
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Disk Tiling
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» More details on the disks tiling study and methods in the backup and here
https://indico.bnl.gov/event/17073/

EIC-SVT Disk-1 Tile
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ePIC MAPS Detector

Barrel Sensor
Pixel Size:  15um
reticles retficlesin # of sensors # of sensors # # Readout . P 2
Layer Index radius (mm) z(mm) Area (mmA2) inwidth length in r-phi inz # pixels sensors Mechanical Links Reticle S.lze- 18.85 x 30 mm
~2.5 GPixel
0 36 270 61,074 3 9 4 1 271,440,000 4 bent ITS3 96
1 48 270 81,432 4 9 4 1 361,920,000 4 bent ITS3 128
2 120 270 203,580 5 9 8 1 904,800,000 8 bent ITS3 320
3 268.4 540 1,017,900 1 9 100 2 4,524,000,000 200 stave 1600
4 418.5 840 2,470,104 1 7 156 4 10,978,240,000 624 stave 624
LAS T T2 T3 T4 T5 T6 17 18 T9
# of reticles 1 2 3 4 5 6 7 8 9
e-endcap
Disk index z (mm) innerr (mm) outerr (mm)
1 -250 36.76 230 133,458 4 4 4 8 1220 0 0O O 593,146,667 52 stave 52
2 -450 36.76 430 506,688 0 0 0 60 4 12 20 44 8 2,251,946,667 148 stave 148
3 -650 36.76 430 506,688 0 0 0 60 4 12 20 44 8 2,251,946,667 148 stave 148
4 -900 40.0614 430 507,819 0 0 0 62 4 16 18 42 8 2,256,973,333 150 stave 150
5 -1150 46.3529 430 505,557 0 0 0 64 2 16 20 40 8 2,246,920,000 150 stave 150
h-endcap
Disk index
1 250 36.76 190 133,458 4 4 4 8 1220 0 O O 593,146,667 52 stave 52
2 450 36.76 430 506,688 0 0 0 60 4 12 20 44 8 2,251,946,667 148 stave 148
3 700 38.52 430 505,557 0 0 0 62 2 12 20 44 8 2,246,920,000 148 stave 148
4 1000 53.43 430 503,295 0 0 0 64 4 14 20 42 6 2,236,866,667 150 stave 150
5 1350 70.14 530 506,688 0 0 0 62 4 14 24 38 8 2,251,946,667 150 stave 150
TOTAL 8,149,986 36,222,160,000 2136 4064
OAK RIDGE .
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ReGdOUT ThOUghTS N. Schmidt’s Simulations:

Detector Average # hits in min. bias pythiaé Average # hits in High
(10x100 GeV) Q2 pythiaé (18x275
GeV

9.3 30.7
16.8 36.3
6.4 2.2
a0 2.4/1.7/14/19/1.8 72/58/49/66/62

« Adding these numbers, the total number of hits (vertex, sagitta, forward/backward disks) would have around 70 hits. Latest
results from DPTS show about 1.2 pixels firing per hit, but no study has yet been done how that changes with incident angle. This
would result in about 85 pixels with data. Let's assume the background is about the same size, i.e., a total number of 170 pixels
per event. How much should we assume for the angle effect?

 An assumed collision rate of 500 kHz would then result in a “Physics” pixel rate of 85 Mega-pixels per second.

« Fromrecent DPTS fake hit rate results, it seems that the current MLR1 prototype sensors have a noise rate of about 10-2 pixel-!

sec-! (corresponding to 107 pixel! event! for ALPIDE). For a total number of 36 B pixels in ePIC, this would result in a total of 310
Mega-pixels per second fired just from noise.

« Adding “Physics” and “Noise” together we need to read out ~400 Mpixels/sec. So far there are no thoughts yet on the data
format out of an ITS-3 sensor, it will probably look very similar to the format from ALPIDE, i.e., region headers followed by double
column addresses, followed by (clustered) matrix addresses of hit pixels. Let’s assume for simplicity é4 bits per pixel. This results in
a total data rate of 25.6 Gbps, not very much compared to a fiber rate of similar capability for the new Phase-2 FELIX fiber links.
Whatever Readout Unit would be developed for ePIC MAPS would mainly be concerned with aggregation of multiple copper
links, removing empty frames, and fransmission over 10 or 25 Gbps fiber links.

... hextslide ...
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Readout Thoughts (continued)

The range of fransmission in ITS2 from the staves to the Readout Units is about 8m at 1.2 Gbps. Studies by M. Rossevij with the
Samtec firefly cables used in ITS-2 show that fransmission at that speed already needs proper pre-emphasis and equalization,
and that the BER eye closes fully at ~3Gbps. For 5 Gbps fransmission lines it seems that an active repeater is needed at ~1m
from the edge of the flex. In case of ITS3 these would be in the service cone, i.e., not in the active region of the ALICE detector.
Where would we be able to place such repeaters in ePIC?

For ITS-3 the line drivers will likely not be configurable for speed, since the layers in ITS-3 are very close and thus need the same
rate capabilities, but some configurability (be it the line rate or how many are actually activated and used) might be
envisaged (according to Gianluca), still to be determined in the future.

Where would we be able to place the above-mentioned Readout Boardse How far would that be from the edge of the flex
cables from the sensors?

A possible means of reduction of the required links out of the MAPS barrel region would be to use a rad-hard FPGA board to
multiplex copper links for up and downstream into one or more fibers (combined into a fiber bundle like an MTP assembly) close
to the flex circuit of the sensor. Possible candidates for FPGA and fiber converters were identified in earlier work in eRD104:
Microsemi PolarFire FPGA, and Samtec optical FireFly. Rad-tolerance might require use of the VIRx+ fiber assembly from the
IoGBT development (possible use of the [pGBT ASIC as well2) instead of Samtec optical FireFly. Questions: Would it perhaps be
possible to incorporate such circuitry into the flex circuit of the sensore If not, where would such a PCB be possible to place
(close to the flex)?

In ITS we were able to accommodate up to 28 copper links per Readout Unit. For ePIC this aggregation would depend on the
number of transceivers available on the FPGA chosen for the RDO board. A (cheap) candidate is the Xilinx Artix UltraScale+
FPGA family (~$250 for the XCAU10P) which has up to twelve 12.5 Gbps transceivers. Assuming 10 links for copper, and 1 link for
fiber, this would mean one would need ~400 RDO boards (corresponding to 400 12.5 Gbps fibers). Each FELIX will likely have up
to 48 fiber links. The whole MAPS detector would then need 10 FELIX boards.
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