A Tracker for PIONEER

Jaydeep Datta

CFNS, Physics and Astronomy Department, Stony Brook University, NY, USA

PIONEER Collaboration

Motivation and goals of PIONEER

- PIONEER is a rare pion decay experiment to be built in Paul Scherrer Institute in Switzerland
- Existing accelerators will be used to generate intense π^+ beam with momentum of 55 \sim 70 MeV/c
- Studies π^+ decay channels for BSM phenomena.

• Measure
$$R_{e/\mu} = \frac{\Gamma(\pi \to e\nu + \pi \to e\nu\gamma)}{\Gamma(\pi \to \mu\nu + \pi \to \mu\nu\gamma)}$$
: $O(\pm 0.01\%)$

• Measure
$$R_{\pi\beta} = \frac{\Gamma(\pi^+ \to \pi^0 e^+ \nu)}{\Gamma(\pi^+ \to all)}$$
: $O(\pm 0.05\%)$

Ref: PIONEER proposal, arXiv: 2203.01981

2

Experimental requirements

- The experiment targets for 0.01% uncertainty in $R_{e_{/\mu}}$ measurement and 0.05% uncertainty in pion beta decay measurement, which asks for very precise counting of the events.
- Though the positrons from $\pi^+ \to e^+$ and $\pi^+ \to \mu^+ \to e^+$ have very distinct energy, still due to loss of energy in various processes, the e^+ spectra from π^+ gets distorted and mixed up with the $\pi^+ \to \mu^+ \to e^+$ spectra

$$R_{e/\mu} = \frac{N_H}{N_L} \frac{1 + c_T}{1 + c_{DIF} + c_{PU}}$$

To Reach our Sensitivity Goal Precision Value $O(10^{-4})$ $O(10^{-8})$ $R_{e/\mu}$ $O(10^{-4})$ $\mathcal{O}(1)$ N_L $\mathcal{O}(10^{-4})$ $O(10^{-8})$ N_H $O(10^{-4})$ $O(10^{-2})$ c_T $O(10^{-4})$??? c_{DIF} $O(10^{-4})$??? C_{PU}

Ref: Talk given by P. Schwendimann in Rare Pion Decay Workshop, 2022

The experiment

G4 beamline model of the π E5 beam line with Calorimeter

Phase	р	$\Delta \mathrm{p}/\mathrm{p}$	ΔZ	$\Delta X \ge \Delta Y$	$\Delta X', \Delta Y'$	R_{π}
	$(\mathrm{MeV/c})$	(%)	(mm)	(mm^2)		$(10^6/s)$
Ι	55-70	2	1	10x10	$\pm 10^{\circ}$	0.3
II,III	≈ 85	≤ 5	3	15x15	$\pm 10^{\circ}$	20

Required beam properties

Working principal

Calorimeter (CALO) Tracker 10° Target (ATAR)

Conceptual design for the PIONEER experiment. Ref: arXiv:2111.05375 Simple schematic of the PIONEER experiment, with Liquid Xenon (LXe) calorimeter, Low Gain Avalanche Detector (LGAD) as Active TARget (ATAR) and cylindrical Tracker. (Ref: arXiv:2203.01981)

Active TARget

ATAR schematic and proposed electronics

- Low Gain Avalanche Detector based detector used as Active TARget (ATAR).
- Dimensions: 2 cm x 2 cm transverse to beam, 6 mm in beam direction, each strip 120 µm thick
- 50 layers of silicon strip detectors, placed in orthogonal direction in consecutive layers
- 200 μm pitch for strips, ~ 5000 channel to read

Calorimeter

- PIONEER goal requires complete energy deposition in the calorimeter
- Fast response, high resolution and symmetric
- 2 options for calorimeter, LXe scintillator or LYSO based calorimeter

 \neg

$\mu\text{-}RWell$ for tracker

Material budget for proposed tracker

1

Simulation conditions

- For precise measurement, simulation of the tracker is being carried out assuming a simple geometry for tracker
- A solid cylindrical shell of length 15 cm and average density of 1.47 gm/cc is implemented as tracker
- It has been assumed that stopped π^+ are decaying at the center of the ATAR, and can decay in any channel.
- $\pi^+ \rightarrow e^+$ event rate has been taken to be of 10^{-2} order w.r.t. $\pi^+ \rightarrow \mu^+$ events
- Effect of one or more layer of tracker has also been studied.

PIONEER detector simulation

Energy deposition in detector

- The three panels show the energy deposition pattern in the detector in cases of no tracker, one layer of tracker and two layers of tracker.
- Calorimeter does not cover the whole range of theta.
- Presence of tracker improves particle detection and energy reconstruction

Modified calorimeter

This geometry suffers from less acceptance

To avoid, the calorimeter is closed in forward direction

Modified tracker

- For the forward going particles one can build a separate tracker, but that will add more dead materials
- To avoid that, a bullet shaped tracker has been conceptualized
- Single volume, but a little more tricky to make

Future plans

- Detector design of the tracker and calorimeter is in process
- Simulations are being carried out to optimize the calorimeter geometry
- Tracker development is under process

Acknowledgement

- We would like to thank CFNS and Stony Brook University for their help
- We are thankful to the PIONEER collaboration for their helpful discussions

15

