

TREND update: a <u>TR</u>i-lab <u>E</u>ffort on <u>N</u>uclear <u>D</u>ata with a focus on proton induced reactions

Presenter: Dmitri G. Medvedev

Date: January 23, 2023

@BrookhavenLab

Co-authors and collaborators

Brookhaven National Laboratory (BNL):

Michael Skulski (postdoctoral), Cathy S. Cutler

Los Alamos National Laboratory (LANL):

 Ellen O'Brien, Christiaan E. Vermeulen, Eva Birnbaum (alumni), Jonathan Morrell (postdoctoral), Francois M. Nortier (alumni, retired)

Lawrence Berkeley National Laboratory (LBNL)/UC Berkeley:

 Catherine Apgar (graduate student), Morgan Fox (alumni), Andrew Voyles, Lee A. Bernstein

Rationale

Knowledge energy dependent cross section is critical for:

- Accurate prediction of the yield of the isotope of interest
- Accurate prediction of radioisotopic impurities
- Defining the energy windows for optimum, cost-effective production of isotopes

It facilitates:

- Production planning
- Defining shielding requirements
- Transportation and shipment constraints

Bonus: comprehensive cross section data sets help constrain nuclear reaction models

Current state of the field

- Most of the data sets are limited to proton energy range up to 30 MeV
- A few more data sets are available up to 160 MeV
- Limited number of data sets are available up to 200 MeV

Approach

A tri-lab collaboration was formed to address the needs and cover proton

energy range up to 200 MeV

- LBNL/UC Berkeley 0 55 MeV
- LANL 55 100 MeV
- BNL 100 200 MeV

Seeks to measure nuclear reaction cross sections for production of medically relevant (and other) isotopes and for beam monitor reactions

A comprehensive list of reactions was captured by Dr. François M. Nortier (Meiring) in 2017

Data sets of the primary focus

Priority	Isotope	Target	Incident particle	Measurement focus	Energy range	Years
1	⁷² Se, ⁶⁸ Ge	⁷⁵ As	р	Primary: ⁷² Se, ⁶⁸ Ge Impurities: ^{70,71,73,75} Se, ^{66,67,69,71} Ge	Up to 200 MeV	2019
2	¹¹⁹ Te, ^{117m} Sn	^{nat} Sb	р	Primary: 119m,119gTe, 117mSn Impurities: 116,117,118,121m,121g,123mTe, 113,119m,121m,121gSn	Up to 200 MeV	2020-21
3	²⁰² Pb	nat T	р	Primary: ^{202m,202g} Pb Impurities: 198,199,200,201,203,204,205Pb	Up to 200 MeV	2022
4	¹³⁴ Ce	^{nat} La	р	Primary: ¹³⁴ Ce Impurities: ^{132,133,133,137,139} Ce	50-200 MeV	2023

Facilities

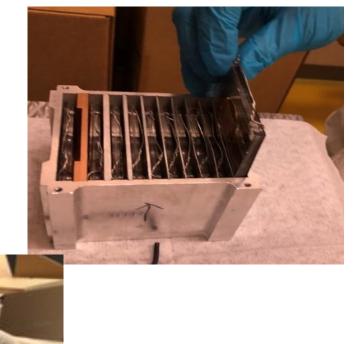
- LBNL operates 88-inch cyclotron
 - Both light- and heavy-ion capabilities.
 - Protons and other light-ions are available at intensities (10-20 pA)
 - Maximum energies of 60 MeV (protons), 65 MeV (deuterons), 170 MeV (³He), and 130 MeV (⁴He).
- BNL (BLIP) and LANL (IPF) share conceptually similar design
 - Operate of proton LINACs
 - IPF max accepted energy 100 MeV, max current 350 μA
 - BLIP max energy 200 MeV, incrementally tunable, max current 200 μA
 - Target stations located 30 feet underground, targets cooled by circulating water
 - Target station cannot be accessed; targets are inserted remotely
 - Designed for large scale isotope production

Experimental: stacked foil technique

- Irradiate array of target and monitor foils with known thickness/areal density intermixed with degraders
 - Very low current 100-200 nA
- Use gamma spectroscopy to count each foil individually
 - Multiple spectra collection allows for accurate error characterization
- Determine activity of <u>all</u> produced radionuclides
- Use activation equation to solve for σ for each individual foil

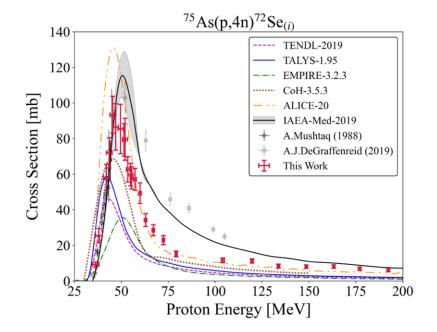
Jon Morrell developed Python based code (Curie)* which performs gamma spectra fitting and decay routine that is used for data analysis

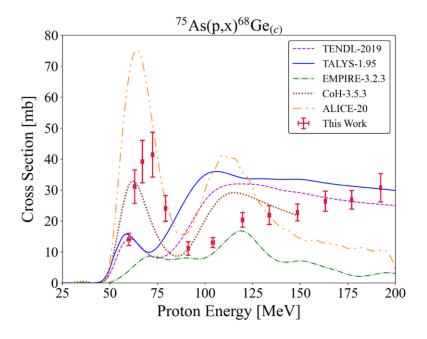
*J. T. Morrell, Curie: Python Toolkit for Experimental Nuclear Data (2020).


Experimental: stacked foils for irradiation

D

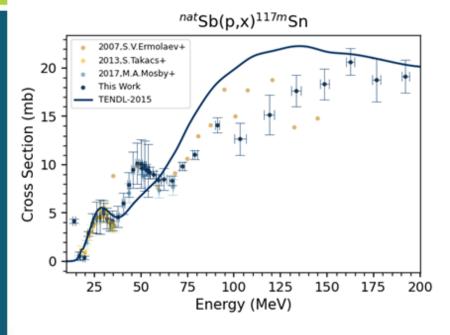
Foil counting set up

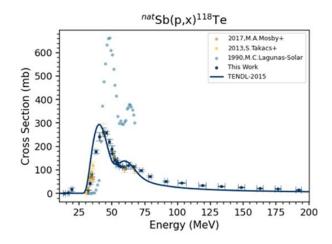


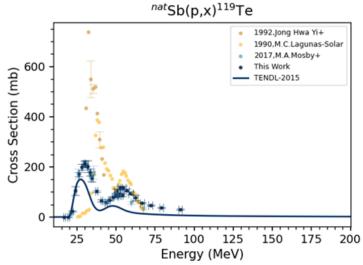


Priority	Isotope	Target	Incident particle	Measurement focus	Energy range	Years
1	⁷² Se, ⁶⁸ Ge	⁷⁵ As	р	Primary: ⁷² Se, ⁶⁸ Ge Impurities: ^{70,71,73,75} Se, ^{66,67,69,71} Ge	Up to 200 MeV	2019

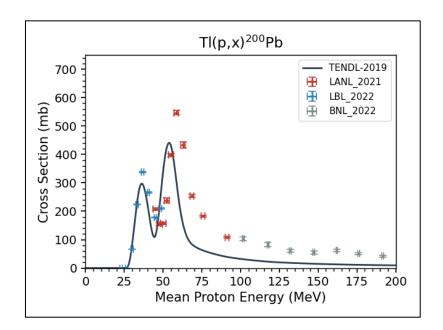
Morgan Fox LBNL

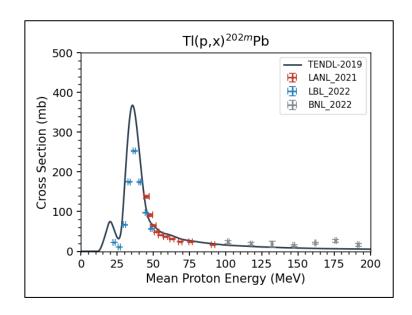





Priority	Isotope	Target	Incident particle	Measurement focus	Energy range	Years
2	¹¹⁹ Te, ^{117m} Sn	^{nat} Sb	p	Primary: 119m,119gTe, 117mSn Impurities: 116,117,118,121m,121g,123mTe, 113,119m,121m,121gSn	Up to 200 MeV	2020-21

Catherine Apgar LBNL





Priority	Isotope	Target	Incident particle	Measurement focus	Energy range	Years
3	²⁰² Pb	nat T 	р	Primary: ^{202m,202g} Pb Impurities: 198,199,200,201,203,204,205Pb	Up to 200 MeV	2022

Michael Skulski BNL

Priority	Isotope	Target	Incident particle	Measurement focus	Energy range	Years
4	¹³⁴ Ce	^{nat} La	р	Primary: ¹³⁴ Ce Impurities: ^{132,133,133,137,139} Ce	50-200 MeV	2023

Jonathan Morrell LBNL→LANL

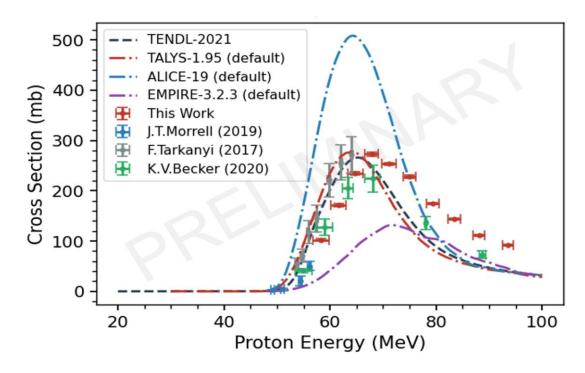


Figure 1. Preliminary measurement of the ¹³⁹La(p,x)¹³⁴Ce reaction cross section, from the Sep. 22 experiment at LANL IPF, plotted against existing measurements and several modeling codes (using default parameters).

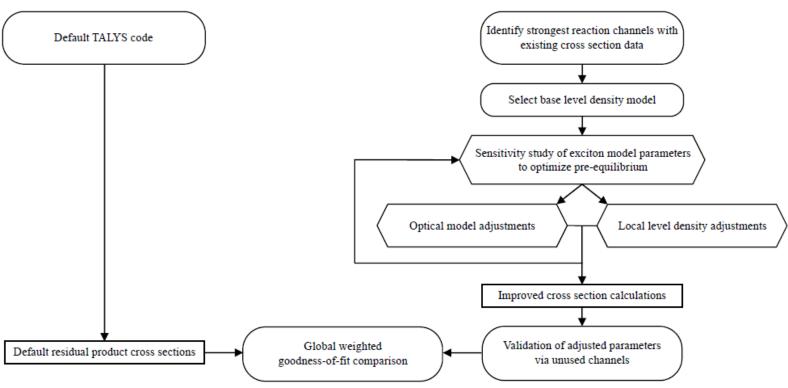
Project Impact so far

- More than 55 datasets for As(p,x) and monitor reactions were collected and analyzed
- Se-72, Se-73, Se-75 data sets were extended to 200 MeV
- First data set for As(p,x) ⁶⁸Ge reaction up to 200 MeV
- Improved predictive power of Talys
- Workforce training component:
 - Jonathan Morrell (UC Berkeley), now postdoctoral scholar at LANL
 - Morgan Fox (UC Berkeley), accepted position in Canada
 - Catherine Apgar (currently graduate student at UC Berkeley)
 Michael Skulski postdoctoral scholar at BNL

Morgan B. Fox, Andrew S. Voyles, Jonathan T. Morrell, et al. Investigating high-energy proton-induced reactions on spherical nuclei: Implications for the preequilibrium exciton model. *Physical Review C*, 103, pp. 034601 (2021)

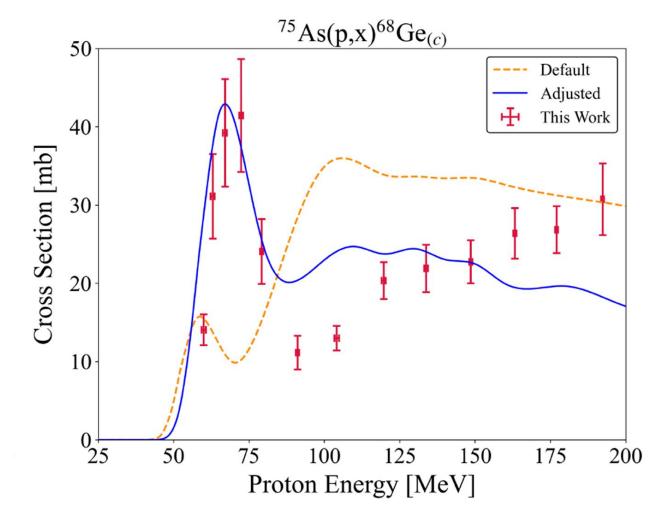
Morgan B. Fox, Andrew S. Voyles, Jonathan T. Morrell, et al. Measurement and Modeling of Proton-Induced Reactions on Arsenic from 35 to 200 MeV, submitted June 2021

Future work


Development of a Machine Learning-Augmented Reaction Evaluation and an Accessible End-User Interface for Radioisotope Production

Talys nuclear reaction code improvement

Morgan Fox LBNL



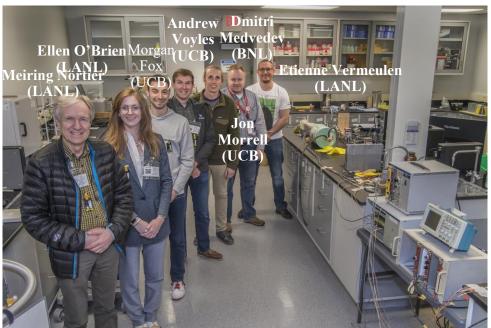
Comparison of default and adjusted Talys calculations

Morgan Fox LBNL

Work scope for the coming years

- AI/ML powered algorithm training using existing TREND measurements
- Additional high-energy cross section measurements to bolster the
 - nuclear physics model performance
- Improving existing recommended cross section database and integrating into a user-friendly yield calculator

Target	Isotope(s) of interest and application			
^{nat} Ag	¹⁰³ Pd (brachytherapy)			
¹⁶⁹ Tm	¹⁶¹ Tb (radioimmunotherapy)			
88Zr (88Zr/88Y generator)				
²⁰⁹ Bi	²⁰³ Pb (SPECT imaging)			
^{nat} r	¹⁸⁸ Pt (Auger emitter)			
²³² Th	²²⁵ Ac, ²²⁵ Ra (radioimmunotherapy)			
nat Gd 152Tb (PET Imaging)				
⁴⁵ Sc	⁴⁴ Ti (⁴⁴ Ti/ ⁴⁴ Sc generator)			
¹⁹⁷ Au	¹⁸⁸ Pt (Auger emitter)			



Acknowledgement

- US Department of Energy Isotope Program for funding
- Whole-hearted acknowledgement goes to all support personnel of LINAC, Health Physics, engineers, designers
- BNL is managed by Brookhaven Science Associates operated by Battelle Memorial Institute (Battelle) and Stony Brook University for US DOE Office of Science.
- LANL is managed by Triad LLC, a partnership between Battelle, the Texas
 A&M University System, and the Regents of the University of California (UC)
 for the Department of Energy's National Nuclear Security Administration.
- LBNL is managed by University of California for US DOE Office of Science

The Tri-lab Nuclear Data Collaboration

Michael Skuiski
(BNL)

Not Pictured:
Lee Bernstein (LBNL)
Eva Birnbaum (LANL)
Cathy Cutler (BNL)

