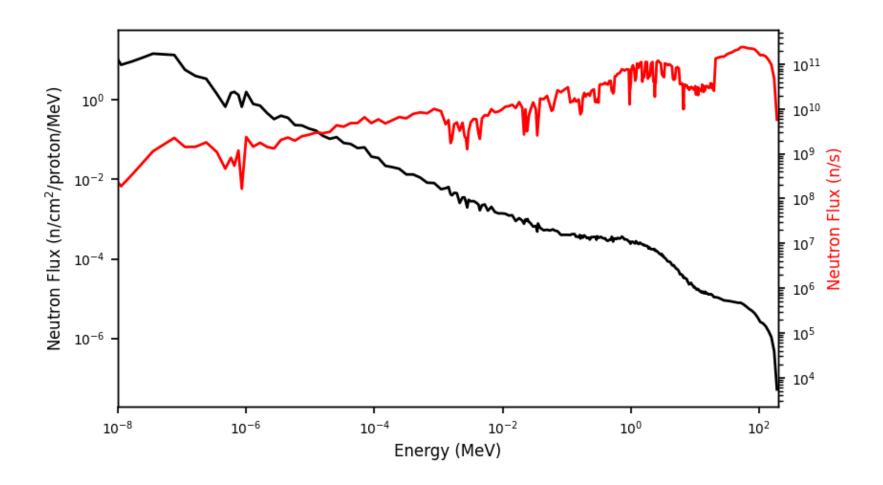




Production of radioisotopes using secondary neutrons at the Brookhaven Linac Isotope Producer

Michael Skulski, Dmitri G. Medvedev, Cathy S. Cutler

January 23, 2023

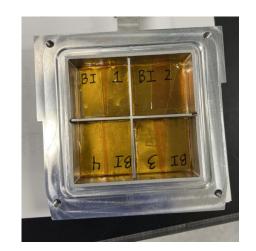


Neutron Production of Radioisotopes

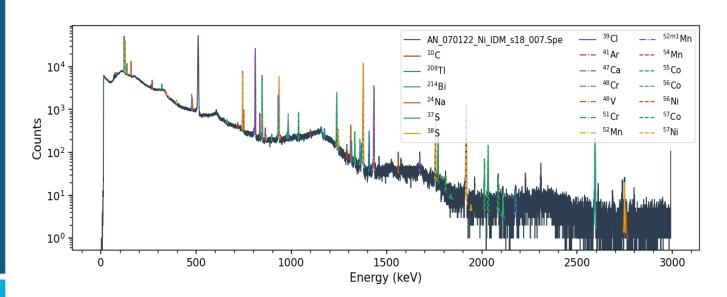
- Alternative production routes for radionuclides compared to charged-particle reactions
- No Coulomb barrier to overcome (no charge)
- Neutrons come free from proton-induced reactions on a production target at BLIP
 - Constant flux from proton-irradiated target stack upstream
 - Large flux of fast neutrons >14 MeV unavailable at reactors

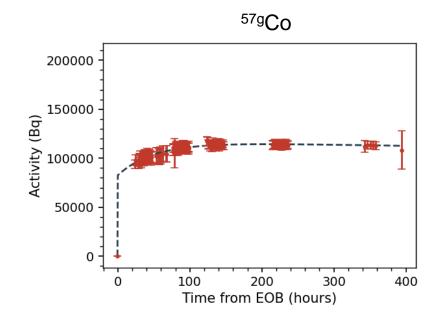
Neutron Spectrum from FLUKA

Irradiation Campaigns

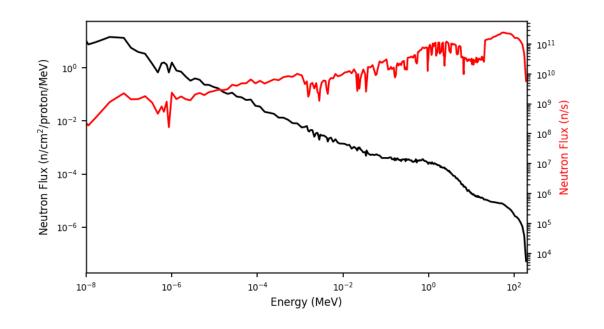

Date	Energy (MeV)	Current (µA-h)	Foils	Goal
June 2021	117	2,700	Ti, Co, Bi	Evaluation of producing select radionuclides in the n-slot
February 2022	200	300	Ni, Bi	Determining inhomogeneity in quadrants of the n-slot
June 2022	200	75	Al, Co, Ni, Zn, Y, Au, Bi	Calculation of neutron spectrum using radionuclides produced over full energy range

Experimental Procedure

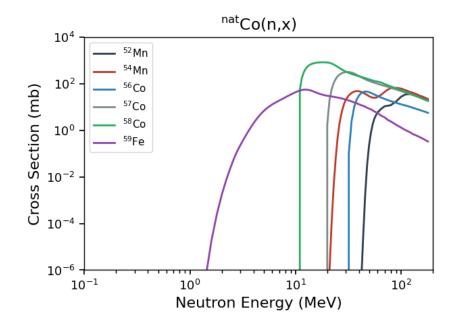

- 1. Irradiation of foils at BLIP using neutrons behind a target array
- 2. Measurement of gamma rays from radionuclide decay
- 3. Data analysis for determination of activities/production rates

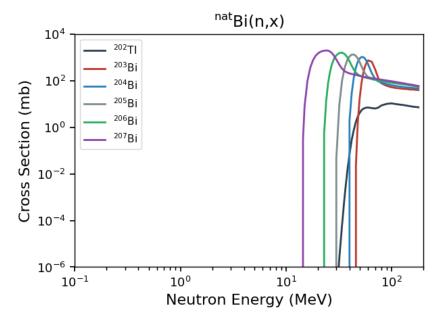


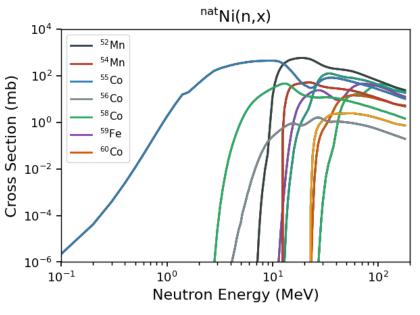
Irradiation, Measurement, & Analysis



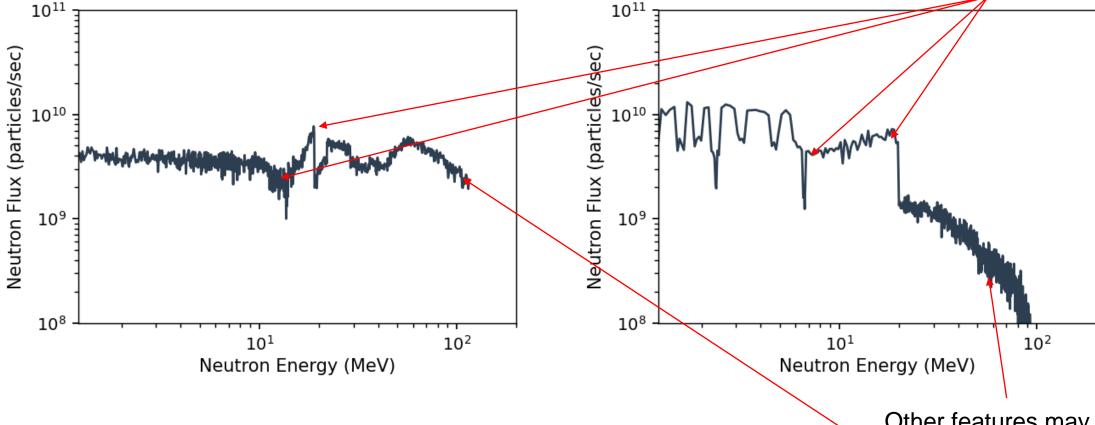
Neutron Spectrum Calculation


$$R = \int N \times \sigma(E) \times \Phi(E)$$

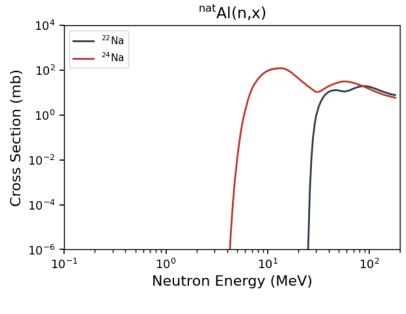

- Discrete energy points for cross section
- Cross sections from TENDL
- Monte Carlo variation of Φ(E)

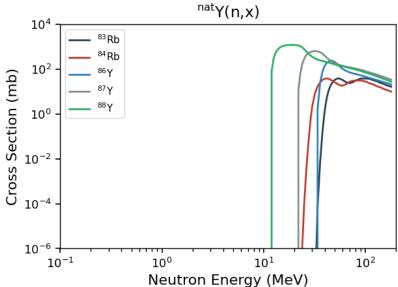


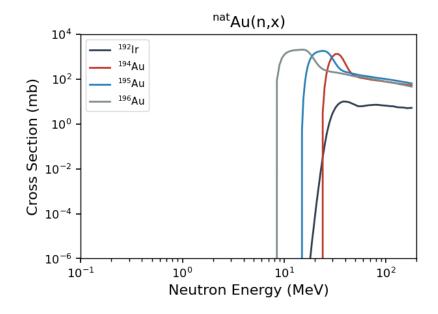
Cross Sections for Monitor Isotopes

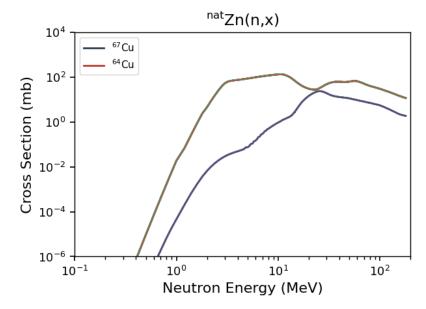


Results of MC Calculation

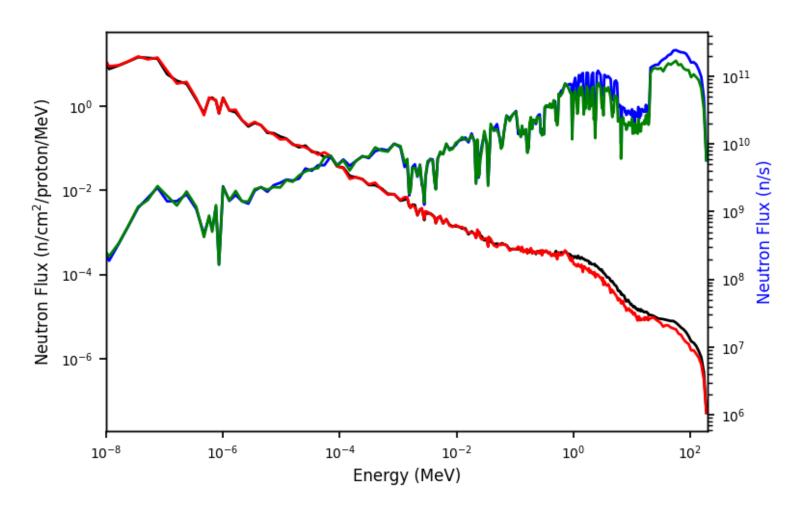

(June 2021)


Similar features that correspond to nuclear phenomena





Other features may reflect low statistics or reliance on one or two cross sections



Modified Neutron Spectrum

FLUKA Flux (n/cm²/MeV/proton)

Modified Flux (n/cm²/MeV/proton)

FLUKA Flux (n/s)

Modified Flux (n/s)

Radionuclide Production

Date	Energy Current (MeV) (µA)	Irradiation Time	Activity at EOB (μCi)		Saturation Rate (μCi/μA/g)		
	(ivic v)	(MA)	(h)	⁴⁷ Sc	⁵⁹ Fe	⁴⁷ Sc*	⁵⁹ Fe
June 2021	117	116	23	1.39×10 ³	44.81	94.77	18.62
June 2022	200	150	0.5	not in n-slot	0.77	not in n-slot	28.76

⁴⁷Sc produced from Ti foil, ⁵⁹Fe produced from Co foil

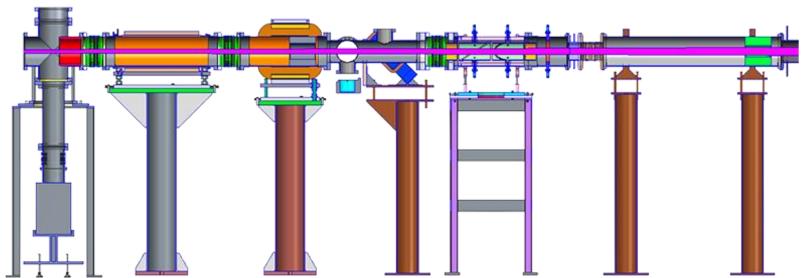
^{*}co-production of ⁴⁸Sc is a challenge to radionuclidic purity

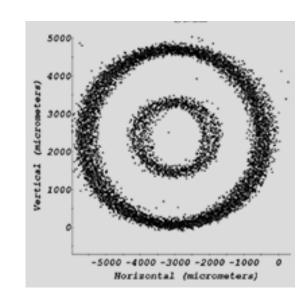
Summary

- Neutrons provide a way of producing additional radioisotopes that may not be accessible through other means, and are already being generated at BLIP with higher energies than those available at reactor facilities
- The initial tests for mapping the neutron spectrum from BLIP has gone successfully, and the irradiation this past June will help solidify the neutron flux behind BLIP for newer target arrays
- Production of medical isotopes such as ⁴⁷Sc, ⁵⁹Fe has been demonstrated, and future medical isotopes will be explored in this manner using natural or enriched targets

Acknowledgments

- Experimental/Safety support
 - MIRP/BLIP Operators
 - Lisa Muench
 - Henryk Chelminski
 - David O'Rourke
 - Radiation Control Division
 - Pat Sullivan
 - Vicky Litton
- Funding
 - US Department of Energy Isotope Program
- BNL is managed by Brookhaven Science Associates operated by Battelle Memorial Institute (Battelle) and Stony Brook University for US DOE Office of Science




Backup Slides

BLIP

Irradiation of Foils – June 2021

- Bi, Co, Ti foils chosen for irradiation
 - 25 mm x 25 mm, 0.25 mm thick
- 23 hour proton irradiation at 116 μA, 117 MeV, rastered beam
 - Time maximizes production of isotopes to 200 mCi control limit which includes short-lived isotopes (minute half-lives)
- Foils counted at BLIP after cooling period

Post-irradiation

- Foils were too hot to be counted right away (0.25 – 1.3 R/h on contact)
 - Each foil cooled until the 150 mrem/h limit for rad work was reached
- Bi foil was so hot that unfortunately the ^{203,204}Bi (~11.5 h half-lives) activities could not be measured before 150 mR/h was reached

June 2021

- 25 mm x 25 mm,
 0.25 mm thick foils
- 23 hour proton irradiation
 - 116 μA, 117 MeV, rastered
- Foils counted at BLIP after cooling period

Isotope	t _{1/2} (days)	Activity			
Bi Foil					
²⁰⁵ Bi	15.31	0.29 mCi			
²⁰⁶ Bi	6.24	1.03 mCi			
²⁰⁷ Bi	1.15×10 ⁴	1.27 µCi			
Co Foil					
⁵⁶ Co	77.24	14.49 μCi			
⁵⁷ Co	271.74	32.45 μCi			
⁵⁸ Co	70.86	0.38 mCi			
⁶⁰ Co	1925.28	0.33 mCi			
⁵⁹ Fe	44.495	44.81 μCi			
Ti Foil					
⁴⁶ Sc	83.79	46.98 μCi			
⁴⁷ Sc	3.35	1.39 mCi			
⁴⁸ Sc	1.82	0.69 mCi			

Produced radioisotopes (EOB)

Isotope	t _{1/2} (days)	Activity		
Bi Foil				
²⁰⁵ Bi	15.31	$0.29 \pm 0.03 \text{mCi}$		
²⁰⁶ Bi	6.24	1.03 ± 0.08 mCi		
²⁰⁷ Bi	1.15×10 ⁴	1.27 ± 0.05 μCi		
Co Foil				
⁵⁶ Co	77.24	14.49 ± 0.72 μCi		
⁵⁷ Co	271.74	32.45 ± 0.83 μCi		
⁵⁸ Co	70.86	$0.38 \pm 0.01 \text{ mCi}$		
⁶⁰ Co	1925.28	$0.33 \pm 0.01 \text{ mCi}$		
⁵⁹ Fe	44.495	44.81 ± 18.13 μCi		
Ti Foil				
⁴⁶ Sc	83.79	46.98 ± 1.61 μCi		
⁴⁷ Sc	3.35	1.39 ± 0.10 mCi		
⁴⁸ Sc	1.82	$0.69 \pm 0.03 \text{mCi}$		

Produced radioisotopes vs FLUKA

Bi Foil

Isotope	t _{1/2} (days)	Activity	Predicted / Measured
²⁰⁵ Bi	15.31	$0.29 \pm 0.03 \text{ mCi}$	0.97
²⁰⁶ Bi	6.24	$1.03 \pm 0.08 \text{ mCi}$	0.81
²⁰⁷ Bi	1.15×10 ⁴	$1.27 \pm 0.05 \mu Ci$	0.8

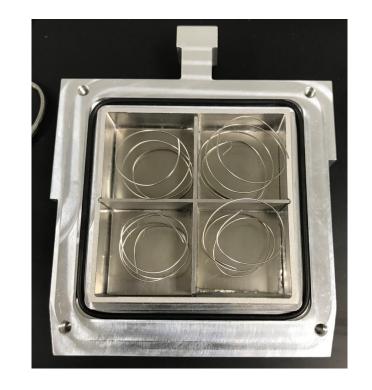
Ti Foil

Isotope	t _{1/2} (days)	Activity	Predicted / Measured
⁴⁶ Sc	83.79	46.98 ± 1.61 μCi	0.53
⁴⁷ Sc	3.35	$1.39 \pm 0.10 \text{ mCi}$	0.46
⁴⁸ Sc	1.82	$0.69 \pm 0.03 \text{mCi}$	0.21

Co Foil

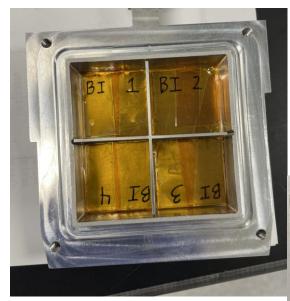
Isotope	t _{1/2} (days)	Activity	Predicted / Measured
⁵⁶ Co	77.24	14.49 ± 0.72 μCi	1.46
⁵⁷ Co	271.74	32.45 ± 0.83 μCi	0.74
⁵⁸ Co	70.86	0.38 ± 0.01 mCi	0.83
⁶⁰ Co	1925.28	$0.33 \pm 0.01 \text{ mCi}$	0.07
⁵⁹ Fe	44.495	44.81 ± 18.13 μCi	0.93

Irradiation – February 2022


Irradiation of Bi, Ni foils in all four quadrants of n slot box to help identify if there are appreciable differences in flux

 Contributable to slight beam misalignment, or beam propagation from start of the stack to the end

150 µA, 200 MeV protons for 2 hours of irradiation behind a thorium target array – neutron spectrum will better reflect real BLIP environment

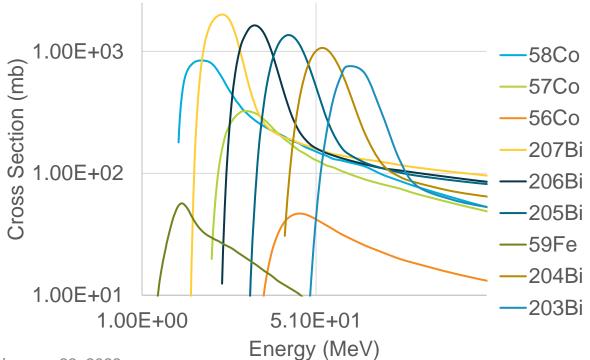

New monitor isotopes from Ni foils cover a wider energy range than Co, including a zero-threshold reaction, and have larger cross sections

Conducted late February, data collecting and will be analyzed in the upcoming weeks, but ²⁰³Bi and ²⁰⁴Bi have been captured

Irradiation – June 2022

- 7 elements (natural abundance)
- 3 planes of foils
 - 1. 4 Bi for tracking flux distribution
 - 2. Al, Ni, Zn
 - 3. Co, Y, Au
- Proton irradiation of thorium target array
 - 200 MeV
 - 150 μA
 - 30 minutes

Monitor Reaction Cross Sections


Currently Possible because of Bi cooling period

"Monitor Reaction" Cross Sections

.00E+03 Section (mb) 58Co —57Co -56Co .00E+02 207Bi Cross -206Bi -205Bi -59Fe 1.00E+01 1.00E+00 5.10E+01 Energy (MeV)

Possible with Shorter/Lower Current Irradiation

"Monitor Reaction" Cross Sections

New Monitor Products

Radionuclide	t _{1/2} (days)	Activity				
Zn Foil						
⁶⁷ Cu	2.6	15.57 ± 0.05 μCi				
Y Foil						
86 Y	0.6	131.82 ± 0.36 μCi				
88 Y	106.6	1.99 ± 0.01 μCi				
Au Foil						
¹⁹⁴ Au	1.6	201.05 ± 11.01 μCi				
¹⁹⁶ Au	6.2	69.87 ± 0.90 μCi				

