Very low Q² Physics and the ePIC Inclusive Group

GD/I Working Group Meeting 6 February2023

Paul Newman (Birmingham)

with Claire Gwenlan (Oxford), Tyler Kutz (MIT) Stephen Maple (Birmingham), Brian Page (BNL) Barak Schmookler (UC Riverside)

1

Not a new question (e.g. from 'Complementarity' studies for Yellow Report)

Complementarity by Mitigating Acceptance Gaps

All detectors have gaps and cracks ... e.g. place gap in scattered electron acceptance between main detector & dipole/tagger in different places?

Can be mitigated by having 2 detectors with different high |η|layouts?

Inclusive group studies have so far focused on Q² > 1 GeV²

- Lower Q^2 yet to be tackled quantitatively, though it is on our wish list! 2

ePIC very low Q² tagger [Igor Korover / Simon Gardner / Far Backward group, B2eP January ePIC Collab meet] agger Target region for Detector acce 3 Quasi-real photoproduction "photoproduction" Events - Theta < 10 mrad $Log(Q^2)$ **S**⁵ 10² 10 10 10 ahlung 14 16 18 Electron energy E, (GeV) -9 -7 -6 -5 -3 Reconstructed $log_{10}(Q^2)$ (GeV²) event rate 12 14 10 Electron Energy [GeV] 10^{-2} Acceptance Counts normalized to $Log(Q^2)$ 0.90.8 10^{-4} 0.7 0.6 10^{-6} 18 20 22 3_{2} nergy E_e (GeV) -3 -7 -5 18 -8 -6 -4 10 12 14 16 -9 Electron Energy [GeV] Reconstructed $\log_{10}(Q^2)$ (GeV²)

Why should we care?

$Q^2 \ll 1 \text{GeV}^2$ corresponds to non-perturbative regime ...

- \rightarrow Proton structure not (well) resolved
- \rightarrow x no longer identifiable as a parton momentum fraction

<u>BUT</u> Crucial for access to novel (low x) density-based effects (saturation)

 Crucial for understanding the (confinement!) transition from partons to hadrons as appropriate degrees of freedom

Notes on Kinematics

$$Q_e^2 = 2E_e E'_e (1 + \cos\theta) \qquad \qquad y_e = 1 - \frac{E'_e}{E_e} \sin^2\frac{\theta}{2}$$

- In 'kinematic peak' region where $E'_e \approx E_e$...

 $Q^2 \rightarrow 2E_e^2(1 + \cos\theta)$

... Strong correlation between Q^2 and θ

- As $Q^2 \rightarrow 0$ and $\vartheta \rightarrow 180^o$...

$$y \to 1 - \frac{E'_e}{E_e} \equiv \frac{E_\gamma}{E_e}$$
 (and $W^2 \to ys$)

- Note that these expressions only depend on the electron beam energy (proton energy is irrelevant) 5

MC Generators

[Brian Page, Barak Schmookler]

Need MC samples extending to(wards) $Q^2 \rightarrow 0$ kinematic limit ... BEWARE!

- No MC can be relied on (?) for inclusive cross section predictions in $Q^2 \rightarrow 0$ limit
- Issues with PYTHIA8 already at Q²~1GeV²
- PYTHIA6 (and DJANGO?) at least produce events ... enough for now ...
- Zeroth order approach is a simple particle gun .

Some possible approaches

1) Vary the electron beam energy?

2) Shift the vertex?

3) Add instrumentation between main detector and very backward Low Q² tagger?

1) Varying the Electron Beam Energy

2) Shifting the vertex

Shifting the mean z of the interaction point in the outgoing hadron direction extends acceptance to larger $|\eta|$

Example from H1:

`H1-94' are nominal vertex ($Q^2 > ~ 1.5 \text{ GeV}^2$)

`H1-94 are with vertex shifted by 70cm $(Q^2 > ~ 0.35 \text{ GeV}^2)$

... 70cm shift achieved factor ~4 in min Q²

[similar techniques applied at RHIC?] ⁹

Shifting the vertex at ePIC

 Q^2 vs η for electrons in kinematic peak

e.g. effect of 1 metre shift on acceptance for E_e'=E_e

Shifting the vertex at ePIC

[Stephen Maple]

Particle gun ePIC simulations (ARCHES) ... probabilities of registering cluster in calorimeters

Nominal vertex

Shifting the vertex at ePIC

[Stephen Maple]

Gets us towards $Q^2 = 10^{-2} \text{ GeV}^2$ but best for low E_e (cf loss of sensitivity to saturation region)

12

3) Adding instrumentation

'Retrofits' at HERA ...

e.g. ZEUS beampipe calo / tracker (Bernd's talk)

- Electrons exited beampipe through exit window to reach the detectors

... approaching Q2 = 10-2 GeV2

[H1 equivalent (VLQ) was less successful]

- Silicon tracker + Tungsten/Scintillator sandwich calorimeter + ToF
- Approximately 3m from the interaction point
- Modified (Al) beam-pipe shape kept material traversed to $< 1 X_0$
- Operational 1999-2000

H1 VLQ Spectrometer

Summary / Comments

- There are ways of reaching $Q^2 = 10^{-1} \text{ GeV}^2$ and approaching 10^{-2} GeV^2 ...

→ Maybe enough for many purposes (e.g. $\sigma_{tot}^{\gamma^* p}$ (W, Q²) already flattens → Reducing the beam energy is most powerful ... but sacrifices high density physics

- \rightarrow Shifting the vertex can help
- Adding more near-beam instrumentation closer to interaction point could take us further

So far, we just scratched the surface using particle gun simulations.
→ Need detailed MC studies to study performance in presence of backgrounds and hadronic final state particles
→ Influence of crossing angle?

