
Summary of EPIC Collaboration Meeting (DAQ Perspective)

Jeff Landgraf

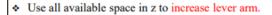
Software / Computing

Subgroups: Shared Leadership and Responsibilities

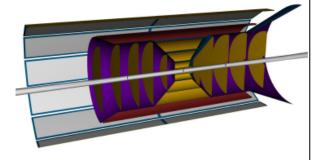
Tracking

Kondo Gnanvo, Stephen Maple, Wenging Fan:

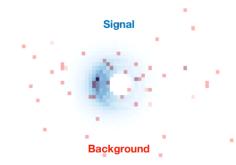
- Some updates to detector (minor from DAQ point of view)
- Lots of tracking studies
- MAPS integration time unknown but assumed ~2us


Rehnier Cruz-Torres:

- Background results starting to come out...
- DAQ attention needed
 - Need to convert to Data Volumes
 - Need to convert to electronics impacts
 - Need to estimate noise/dark currents


ePIC end cap trackers: Current configuration

- Number of disks in the electron direction increased to improve acceptance at high eta/increase number of points on track.
- At |eta| >= 3 in the electron going direction, hits on three disks only in reference detector. Insufficient considering noise and inefficiency.



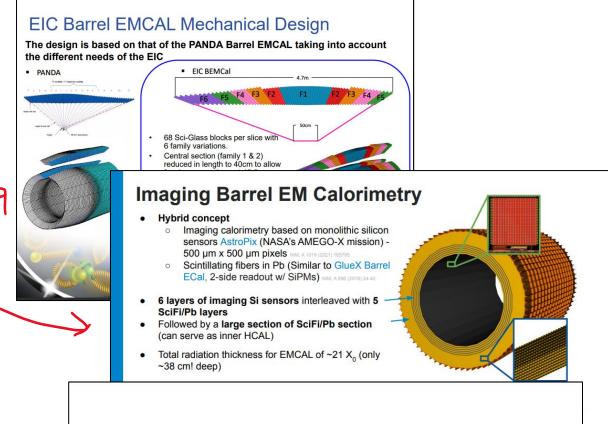
DISKS	+z [mm]	-z [mm]	X/X0 %
Diels 4	250	050	0.04

Background and track reconstruction studies

Reynier Cruz-Torres Lawrence Berkeley National Laboratory

Presenting work done by lots of people: J. Adam, E. Aschenauer, W. Deconinck, J. Huang, A. Jentsch, K. Kauder, D. Lawrence, J. Nam, J. Osborn, B. Sterwerf, Z. Zhang, ...

Calorimetry

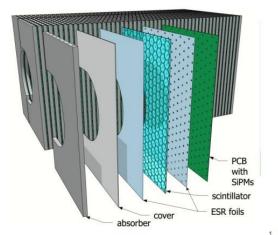

Joshua Crafts, Maria Zurek

 The Barrel Ecal technology still not decided, but lots of details of each technology described

Miguel Arratia:

- Insert not in baseline
- Argued that it should be, and if it shall ever be installed must be in baseline

 No clarification regarding the two competing readout schemes (HDCROC32 for all vs ADC/FPGA for some)


Calorimeter Insert for ePIC

Miguel Arratia, on behalf of the insert team

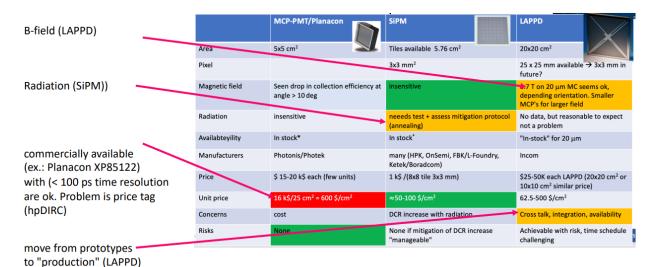
CALIFORNIA EIC CONSORTIUM

January 10th 2023, EPIC collaboration meeting

Cherenkov PID

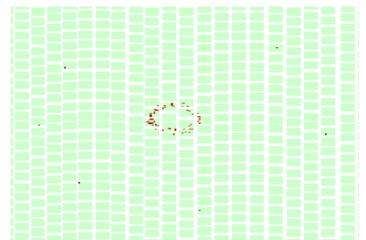
Pietro Antonioli:

- LAPPD technology for mRICH/pfRICH
- mRICH vs pfRICH not determined
- LAPPD or MCP-PMT for hpDIRC
- SiPM dark currents better than previous estimates by ~x5 because of continuous/semi-continuous annealing.


Christopher Dilks:

 Outer ring ~7hits... To be found in high noise environment for dRICH

the candidates table (June 2022)


eRD110 presentation shown at "From RICH to EIC" / AGS/RHIC user meeting – June 2022

Jan 10 2023 – ePIC meeting

P. Antonioli – Cherenkov PID: photosensors

Event Display: digitized hits

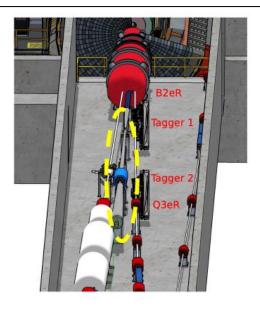
- Digitization:
- Quantum Efficiency (20-40%)
- Pixel gap cuts (88%)
- · Safety factor (70%)
- # hits << # photons
- Still does not include SiPM noise!

C. Dilks ePIC dRICH

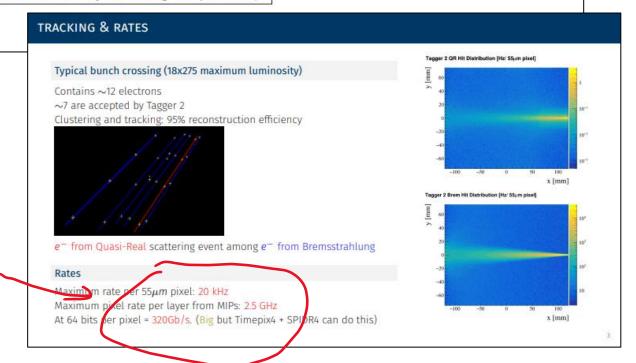
Far Backward

Igor Korover, Jae Name, Dhevan Gangedharan:

- Detectors physical positions changing
- Still shifting in terms of technologies (or perhaps it's my understanding that is shifting
 (i)

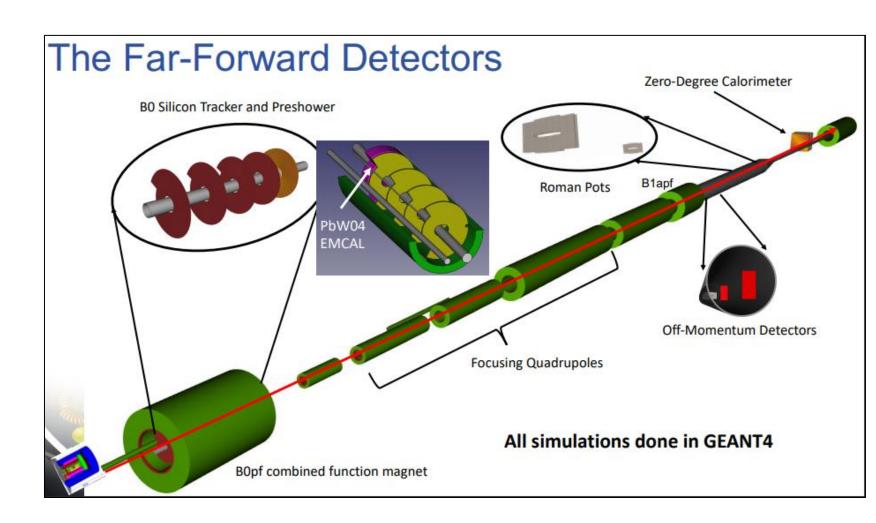

Simon Gardner (Low Q^2 Taggers):

- 320 Gb/s is about 3x previous estimates
 - More FELIX must be allocated
 - Define analysis, Organize Analysis (data in separate computers?), ensure resource for analysis.


Luminosity Monitors

The luminosity measurement provides the required normalization for all physics studies.

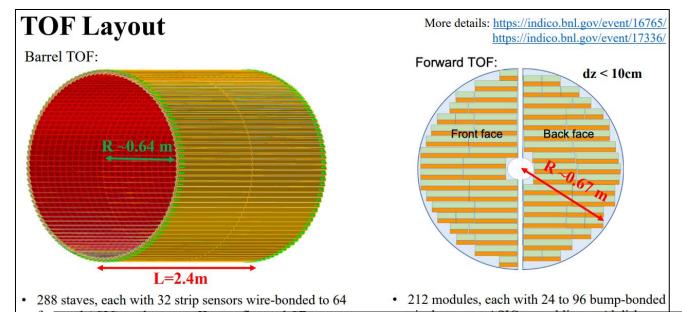
- Absolute cross sections.
- Combine different running periods.
- Relative luminosity of the different bunch crossings.


Accuracy of the order of 1% is required (or relative luminosity exceeding 10-4 precision)

Far Forward

Alexander Jentsch:

 Focus was on tracking & detector performance



TOF

Zhenyu Ye:

- Decisions
 - Strips for barrel
 - Pixels for Endcap
 - No Backward Endcap (LAPPD RICH readout)

Refers to DAQ plans (via tonko)

On-detector Electronics Development

Approved R&D proposal (eRD109) includes readout electronics work from ORNL. Further PED request by BNL, Rice and other institutions through DAQ group is anticipated

- ORNL: Readout R&D for barrel implementation
 - Targeting kapton flex design for minimal material budget
 - Integration into barrel mechanics
- BNL:
 - Readout board reference prototype
 - Precision clock distribution
- Rice: Readout board implementation for TOF endcap, power board
 - Based on CMS-ETL service hybrids

1/11/23

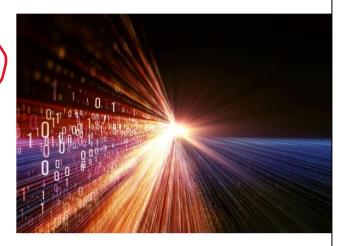
DAQ (1):

Markus Diefenthaler:

- Comment from Rolf on point:
 - Need to actually define what these points look like in detail
- Direct conversations:
 - Lots of interest in what this will look like for analysis

Streaming Workshop X – Vision and Opportunities for Streaming Readout at EPIC

Summary

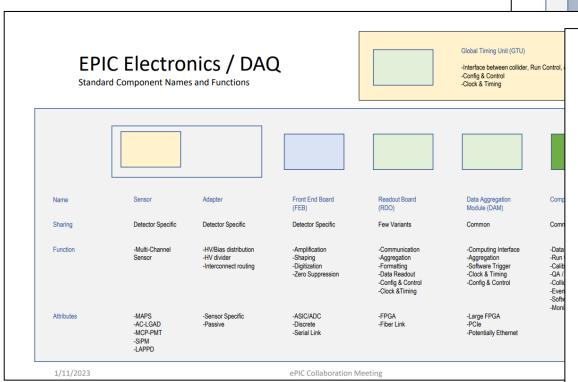

Ma

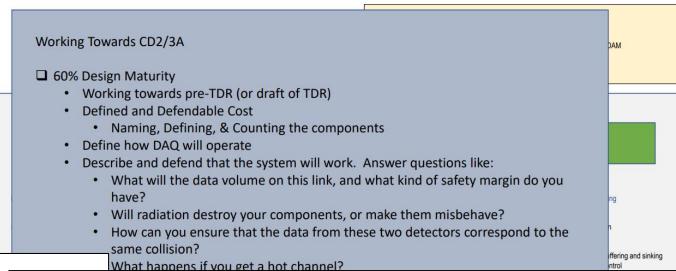
Markus Diefenthaler mdiefent@jlab.org

We are working to accelerate science.

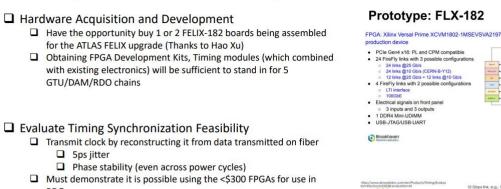
- · Goal Analysis-ready data from the DAQ system.
- Solution Seamless data processing from DAQ to analysis using streaming readout and AI/ML in near real-time.
- We have the advances in scientific computing, we now need to organize and to collaborate to take full advantage of these advances.
- How will the EPIC Computing and Software and DAQ and Electronics WGs work together?

Many opportunities for autonomous control and experimentation.





DAQ (2):


Jeff Landgraf:

Focus on status / plans

Summary of Current and Pending Activities

☐ Formed RDO/Synchronization and Timing group to demonstrate this

Pietro Antonioli

☐ First active development towards working RDO

☐ Jo Schambach, William Gu, Marius Wensing, Tonko Ljubicic, &

24 links @10 Gb/s (CERN-B-Y12) 12 links @25 Gb/s + 12 links @10 Gb/s

3 inputs and 3 outputs

DAQ (3):

Proposals

☐ Five (5) proposals were received and originated from various EIC subdetector groups. These cover the R&D efforts for ASICs and Electronics in support of the EIC detector readout:

Proposal	File	Authors	Sub-Detector	Sensor	Readout	
				Туре	Solution	
Α	eRD109_pECAL_readout_prototype	G. Visser (IU),	Calorimeter	SiPM	Discrete,	1
	_FINAL	et al.			COTS, ASIC	
В	eRD109CalorimeterReadout	N. Novitzky	Calorimeter	SiPM	ASIC	
		(ORNL), et al.			(HGCROCv3)	
С	eRD109-alcor	M. Ruspa	dRICH	SiPM	ASIC (ALCOR)	
		(INFN), et al.				
D	ACLGAD_ASIC_Electronics_FY23	Z. Ye (UIC), et	Central, Far-	AC-LGAD	ASIC	7
		al.	Forward		(EICROC1,	
					FCFD1, 3 rd	
					Party)	
E	eRD109_SALSA_proposal_vfinal1	D. Neyret	Micromegas,	MPGD	ASIC (SALSA)	1
		(CEA), et al.	GEM,			
111			MicroRWell			

☐ For further details, refer to the documentation submitted for each of the proposals.

