

Update on Kinematic Fitting for DIS events at ePIC

L. Gonella, P. G. Jones, <u>S. Maple</u>, P. R. Newman

A quick reminder about kinematic fitting in BAT

- Reconstruction is overconstrained: only need 2 quantities to obtain x, y, Q²
- From the measured quantities $\vec{D} = \{E_e, \theta_e, \delta_h, p_{t,h}\}$ we can use a kinematic fit to reconstruct an additional piece of information: $\vec{\lambda} = \{x, y, E_v\}$
- For a kinematic fit, we use a likelihood function based on our knowledge of the detector resolutions:

E_y is energy of an ISR photon

Likelihood

$$P(\overrightarrow{D}|\overrightarrow{\lambda}) \propto \frac{1}{\sqrt{2\pi}\sigma_E} e^{-\frac{(E_e - E_e^{\lambda})^2}{2\sigma_E^2}} \frac{1}{\sqrt{2\pi}\sigma_\theta} e^{-\frac{(\theta_e - \theta_e^{\lambda})^2}{2\sigma_\theta^2}} \frac{1}{\sqrt{2\pi}\sigma_{\delta_h}} e^{-\frac{(\delta_h - \delta_h^{\lambda})^2}{2\sigma_{\delta_h}^2}} \frac{1}{\sqrt{2\pi}\sigma_{P_{T,h}}} e^{-\frac{(P_{T,h} - P_{T,h}^{\lambda})^2}{2\sigma_{P_{T,h}}^2}}$$

A Bayesian method can also be applied in which information from our knowledge of the cross sections is encoded as a prior:

$$P_o(\vec{\lambda}) = \frac{1 + (1 - y)^2}{x^3 y^2} \frac{[1 + (1 - E_{\gamma}/A)^2]}{E_{\gamma}/A}$$

Prior

Reconstructing Simulation Output

- NC DIS events passed through ePIC-Arches geometry, Q² > 100 GeV²
 - Files available at <u>http://S3/eictest/EPIC/RECO/22.11.2/epic_arches/DI</u> <u>S/NC/18x275/minQ2=100/</u>
- Perform a basic reconstruction using only calorimeter information
- Choose events where electron is scattered with $|\eta| < 1.3$ and $p_{\tau} > 10$ GeV (electron chosen as highest p_{τ} cluster in EcalBarrelSciGlassClusters) \rightarrow Add all ECAL clusters within $\Delta R < 0.5$
- Choose events with y > 0.01
- All other clusters used for HFS:

 $δ_h = Σ E_i(1 - cos(θ_i))$ $P_{T,h}^2 = (Σp_x)^2 + (Σp_y)^2$

"Calibration"

"Calibration"

Constant

Mean

Sigma

Apply calibration \rightarrow E-pz sum now peaked at 36 GeV as expected

Resolution on y (Calorimeter only reconstruction)

- All methods perform quite poor at low y with calorimeter only reconstruction → might improve by taking angles from tracks instead of position of clusters
- Kinematic fit performing somewhere between e-method and hadron based methods in each region → need better parametrisation

Track only reconstruction

- Take electron as highest p_T track → energy distribution from tracks is unbiased → no calibration necessary for e⁻
- Still need to calibrate hadrons

Track only reconstruction

- Hadron resolutions comparable
- Electron energy resolution improved from ~1.8% to ~1.2%
 - Should the tracker be winning here?

 χ^2 / ndf = 319.5 / 10

Constant 1.954e+04 ± 6.046e+01

 $(E-p_{z})_{h} + (E-p_{z})_{e}$

15

20

 35.81 ± 0.00

25

30

 0.8828 ± 0.0041

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

Mean

Sigma

10

Resolution on y (Tracker only reconstruction)

- Track only reconstruction outperforms **this** calorimeter only for all methods in all y ranges
- Most notable improvement seen in electron based methods → significant gains from precise electron angle measurement?
- Fit performs comparable to best method in each region → promising as ISR not yet included

00

Summary

- A fit of all detector information makes it possible to exceed the performance of traditional reconstruction methods for x, y, Q², as well as identifying and accounting for the effect of possible ISR photons
- This method was applied to ePIC full simulation NC DIS data that was reconstructed using either the calorimeters or tracker alone
 - No reconstruction method performed well when calorimeter information alone was used
 - Tracking only reconstruction improved the quality of the electron measurement while keeping a similar quality of HFS reconstruction
 - The Kinematic fit gave comparable performance to the best reconstruction in each y bin

Next Steps

- Improve reconstruction by intelligently combining track and calorimeter information
- Look into electron energy measurement to understand difference in performance between calorimeter and tracker
- Repeat studies with events containing ISR to fully leverage kinematic fitting method