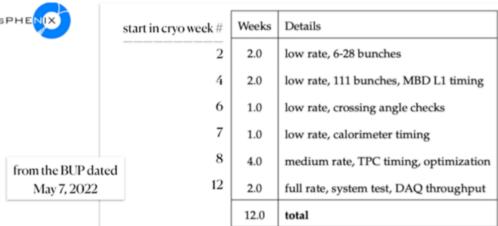


Commissioning Plan

magnet cooldown ~ 1 week


cosmics magnet

ON (*)

12 weeks of

commissioning with

beam

10/

Commissioning with beam cryo weeks

cryo week 1

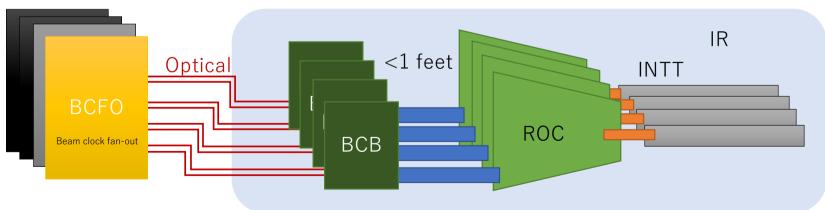
start of cryo

week 2

end of cryo

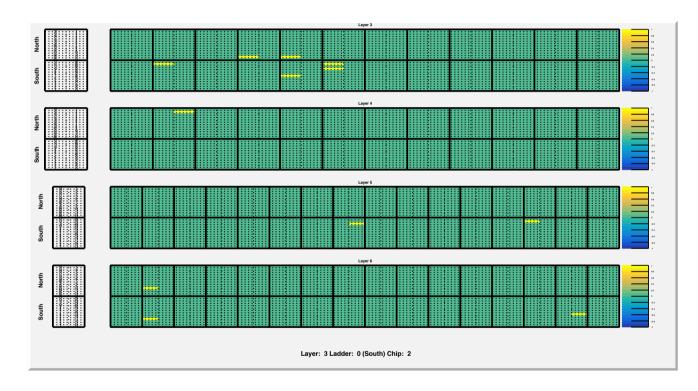
Will likely delay Magnet "ON" date to allow daily access shifts for detector debugging

	Table 3.1: Timeline	week 13			
N	reek RHIC	SPHENIX	Result		J
	1 No beam	Magnet cool-down and ramp	Magnet at full field		
	6 bunches, 0 crossing angle, 200 GeV Au+Au, 2 collision rate 2 kHz	Take data with MBD; set up MB trigger	z vertex distribution, MBDLL1 operational; other detectors begin to energize	start of cryo week 14	
	6 bunches, 0 crossing angle, 200 GeV Au+Au, 4 collision rate 2 kHz	Begin operating calorimeters, TPC	Assemble Big partition; event displays	Week 14	
	6 bunches, 2mr crossing angle, 200 GeV 6 Au+Au, collision rate 2 kHz	Take data with nominal low luminosity conditions; zero field run	First slug of data analyzed at RCF	end of cryo week 24	
	111 bunches, 0 mr crossing angle, 200 GeV 8 Au+Au, 1-5 kHz	Take data with luminosity approaching design	Stress test DAQ, measure radiation environment	J J	
	111 bunches, 2 mr crossing angle, 200 GeV 10 Au+Au, 5-15 kHz	Attempt full operation	Detector monitoring operational	cryo off	
	Begin Physics data taking (111, 2mr, 200 GeV 12 Au+Au, 20 kHz)	Physics data taking		0.70 011	
/1	3 7.22 2 2022/10/13 End Gar	ne Reivew (Ed Oʻbrien)	John commTF 2021-08-25	Charge	


11 weeks of Au + Au physics

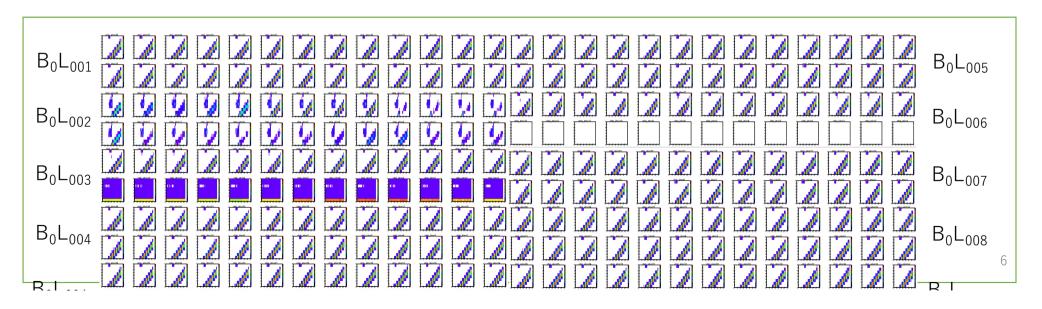
Question #7

INTT Barrel Cabling



Commissioning without beam

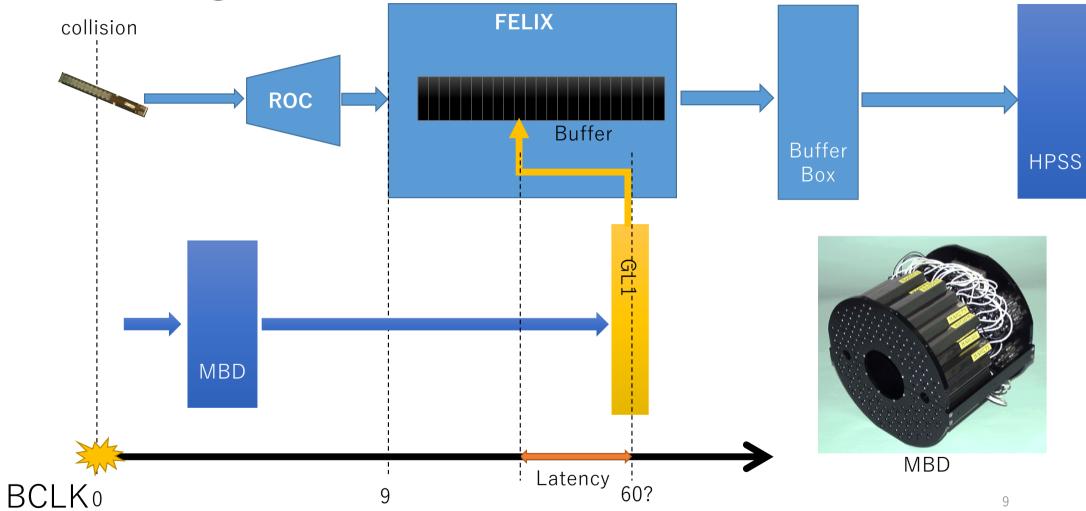
- 1. Apply 100V bias (HV GUI). Diagnose any over current channels.
- 2. Power on a ladder by ladder (LV GUIs) and apply 100V bias. Run the calibration. Make sure the results appears in the expected ladder map in the Calibration Monitor.
- 3. Diagnose missing channels and try to recover.
- 4. Random trigger noise run (random external trigger). Debug any large noise half ladder or channels (online monitor).
- 5. Tune the alert range of LV/HV voltage/current control panels (alert features of LV/HV GUI).
- 6. Save dead/hot channels in the database. (Expert GUI)


Noise rates

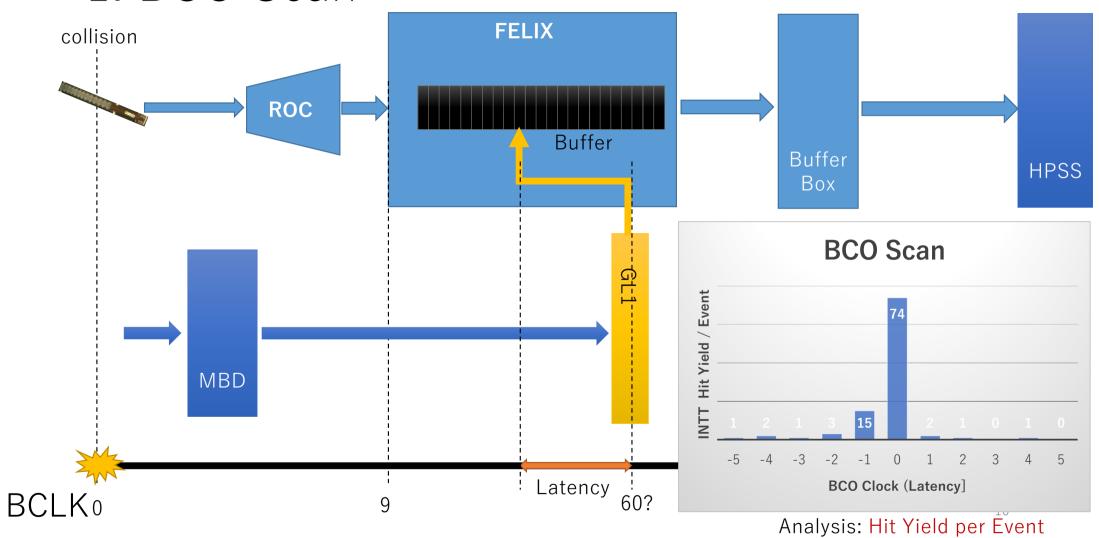
- Noise rate are to be compared with the online monitor and check the uniformity of the noise.
- Spot noisy channels and too cold channels and diagnose.

Calibration Monitor

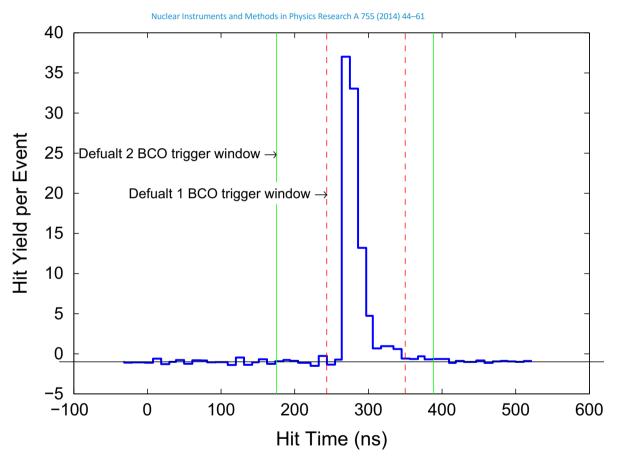
- Should have a calibration results at a glance. At least the results of ½ barrel appears in a single page. Is it possible?
- Perhaps a calibration mode can be implemented to the OnlineMonitor, but #of hits/strip is not sufficient. We definitely need ADC vs. Amplitude 2D plots.



Commissioning with beam


- 1. BCO Timing Scan (INTT Hit Yield/Event).
- 2. BCO Phase Scan fine tweak the timing with respect to BCO.
- 3. Mis-cabling check by the geometry (Event Display)
- 4. Diagnose missing channels and try to recover
- 5. Check yield uniformity (Online Monitor)
- 6. Gain matching between ladders or fine tweak noise
- 7. DAC Scan at HV=100V (DAC Scan Analyzer)
- 8. Bias Voltage Scan (MIP/MPV Fitter)
- 9. DAC0 threshold optimization. S/N evaluation chip by chip.

Timing Tune


Timing Tune

1. BCO Scan

2. BCO Phase Scan

Fig. 32. Timing distribution of the FVTX hits relative to the RHIC beam clock.

6.1. Timing

The distribution in time of FVTX hits is studied relative to the RHIC collision time by comparing the hit rate at different FVTX delay values relative to the RHIC beam clock. The timing distribution for two sectors of wedges in the south arm is shown in Fig. 32. Most hits fall in a window ~ 30 ns wide.

Two standard trigger timing configurations were used during FVTX operation, as shown by the vertical lines in Fig. 32: during relatively low trigger rate running (in heavy ion systems) hits arriving in a time window two RHIC beam clocks (BCO) wide (1 BCO \sim 106 ns) are accepted. In high trigger rate p+p running, a 1 BCO-wide window is used to avoid recording accidental hits from neighboring beam crossings (1 BCO apart).

On 2023/01/12 22:22, Huang, Jin wrote:

That was exactly how it was done and highly recommended for intt too. It took few hours of a special low bunch fill to perform this scan, shifting BCO phase 19-20ns at a time. That appears the only way to set timing for the sub-bco delay Jin

2. BCO Phase Scan

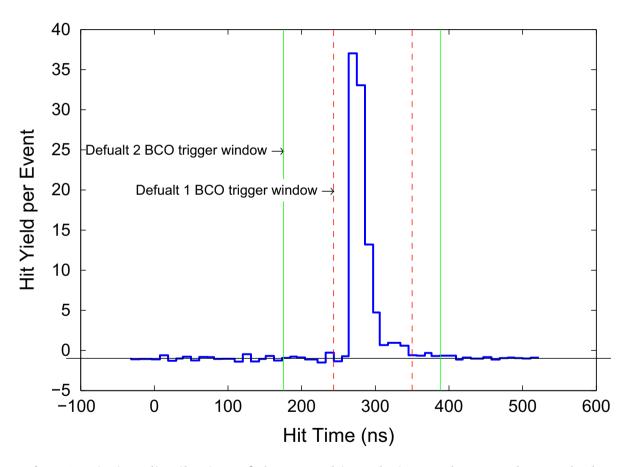
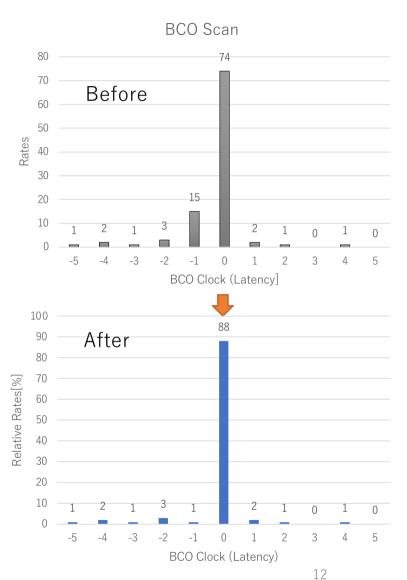
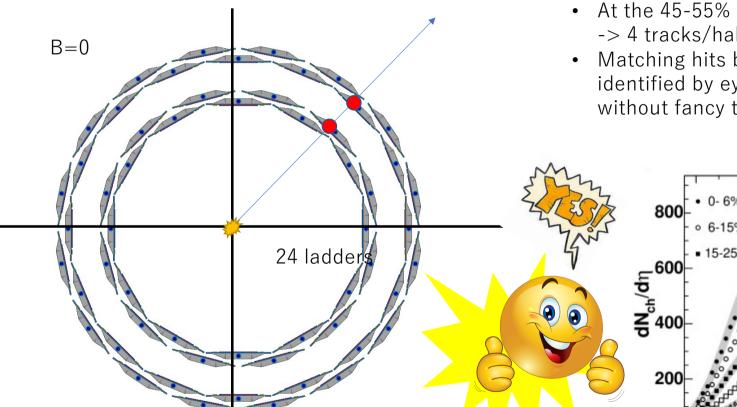
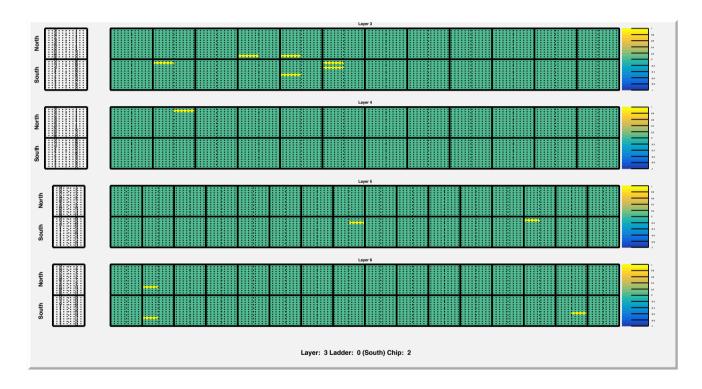




Fig. 32. Timing distribution of the FVTX hits relative to the RHIC beam clock.

Ladder Geometrical Check

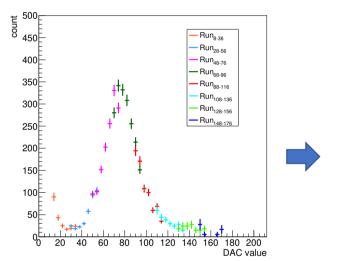
3. Hit Matching

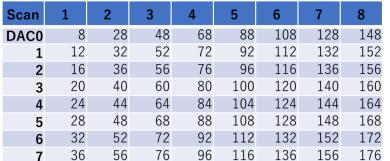

- In early stage of the commissioning, sPHENIX is operated with magnetic field off.
 - Tracks are expected to be straight.
 - At the 45-55% centrality collision, $80/|\eta|$ tracks -> 4 tracks/half ladder -> 0.15 hit/chip.
 - Matching hits between L0 and L1 can be identified by eye using the event display without fancy tracking algorithm.

800 - 0-6% Au+Au 200 GeV = 25-35% - INTT Acceptance 35-45% - 45-55

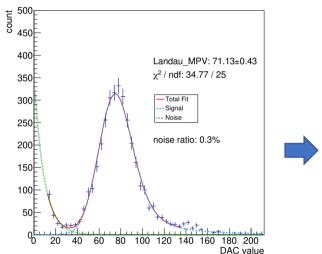
https://wiki.sphenix.bnl.gov/index.php/INTT_GEANT_model/geometry#/media/File:2020-05-30-160330_940x871_scrot.png

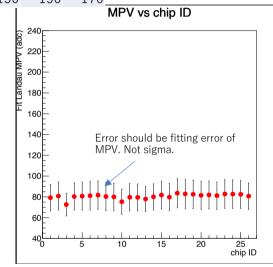
Hit Rate Uniformity Check


Hit Rate Uniformity Check


- Definitely need the online monitor working.
- Some non—uniformity can be observed by:
 - Bad cable contact
 - Dead channel
 - Hot channel
 - Gain variation
 - • • •
- This check suppose to be executed periodically after the DAC0 threshold optimization

DAC Scan

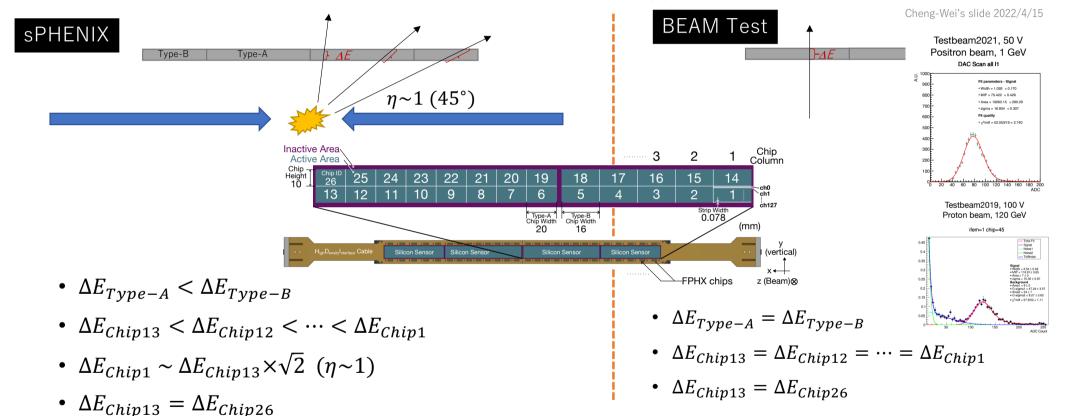

DAC Scan


- Chip-by-Chip Base
- Clustering (Optimize offset value)
- Normalization btwn adjacent runs
- Concatenate all runs

ビームテストと同じ設定で良いか? オーバーラップ binは二つ?

 Fitting with Landau+Gaussian convolution function.

Half ladder by half ladder

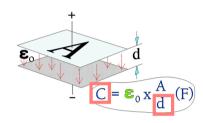


All ladders

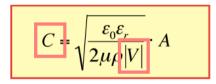
Save all fitting parameters: MPV, Width, ...

How Energy Deposit Looks like in sPHENIX?

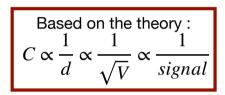
DACのオーバーフローが出ちゃうか?



 $\Delta E_{Chip13}^{sPHENIX} @50V \sim \Delta E_{Chip13}^{ELPH2021} @50V$, $\Delta E_{Chip13}^{sPHENIX} @100V \sim \Delta E_{Chip13}^{FNAL2019} @100V$? To be studied by a **simulation** in advance.


Bias Voltage Scan

Bias Voltage Dependence


Cheng-Wei's slide 2022/4/15

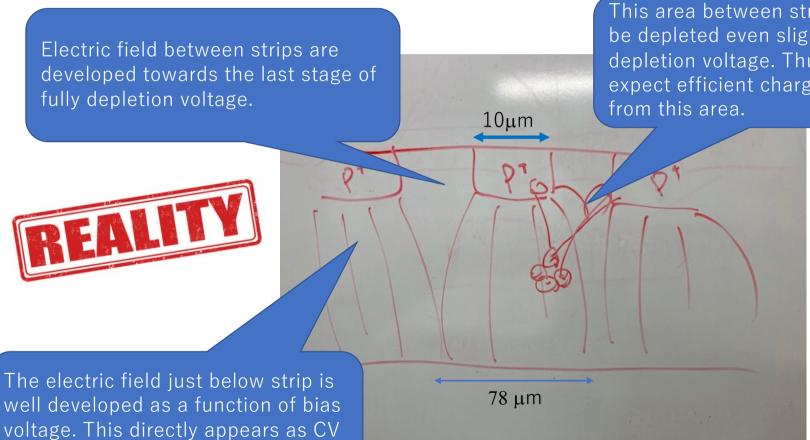
$$W = \sqrt{2\epsilon (V + V_{bi})/Ne} = \sqrt{2\rho\mu\epsilon(V + V_{bi})}$$

$$\frac{dE/dx \cdot d}{I_0} = \frac{3.87 \cdot 10^6 \text{ eV/cm} \cdot 0.03 \text{ cm}}{3.62 \text{ eV}} \approx \frac{3.2 \cdot 10^4 \text{ e}^-\text{h}^+ - \text{pairs}}{\text{Signal}}$$

C: capacitance


d: the distance of the depletion region

V : supply bias voltage

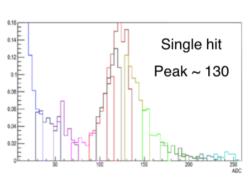

signal: edep

Itaru's Slide 2022/06/22

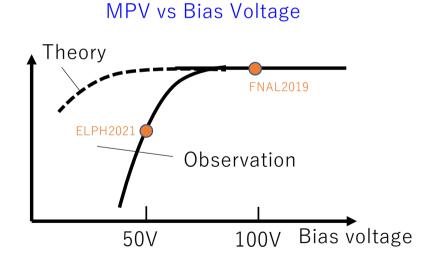
Principles of operation

Electric field at non-fully depleted voltage

response.

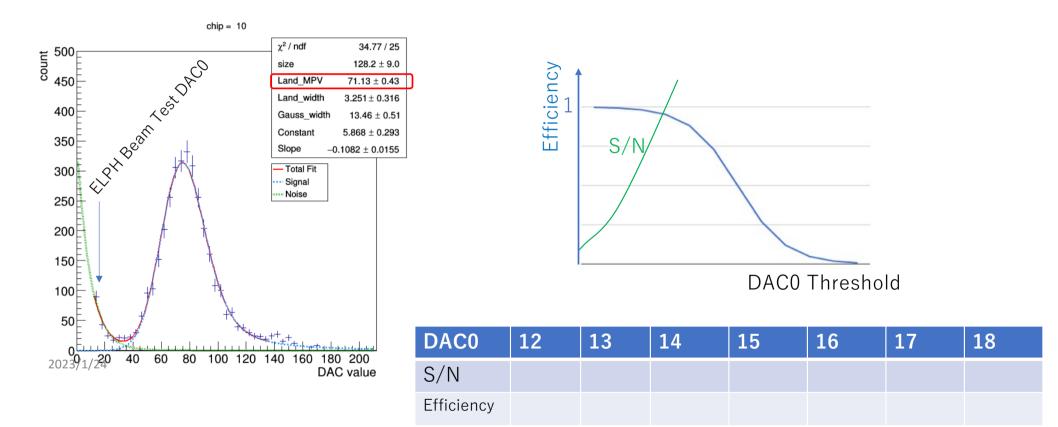

This area between strips might not be depleted even slightly below the depletion voltage. Thus we cannot expect efficient charge collection

> The best way to prove this hypothesis is to see the position dependence of the resolution within the strip width. We'll see a dip in the efficiency distribution around the edge of a strip.


Not sure if this is doable with cosmic ray...

Bias Voltage Scan Plan

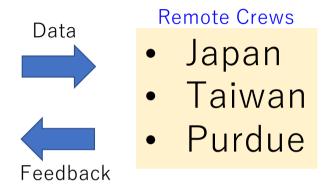
- Importance: It is likely we ends up with operating <100V due to over current of some silicons.
- We need to know the collecting # of electrons below 100V.


Scan	1	2	3	4	5	6	7	8
DAC0	8	28	48	68	88	108	128	148
1	12	32	52	72	92	112	132	152
2	16	36	56	76	96	116	136	156
3	20	40	60	80	100	120	140	160
4	24	44	64	84	104	124	144	164
5	28	48	68	88	108	128	148	168
6	32	52	72	92	112	132	152	172
7	36	56	76	96	116	136	156	176
							I	

- Scan at 90V, 80V, 70V, 60V, 50V only around MIP region.
- Need immediate semi-online analysis (DAC Scan code) if data is satisfactory to cover MPV peak.
- The goal is to make the plot of MPV vs. Bias voltage.
- Not sure if we can run a simulation.

DAC0 Threshold Scan

DAC0 Threshold Scan


- We may need to customize the DAC0 value Chip-by-Chip Basis for noisy chips
- Need to confirm MPV/MIP are same for all Chips.

Manpower operation during commissioning

Onsite Crews

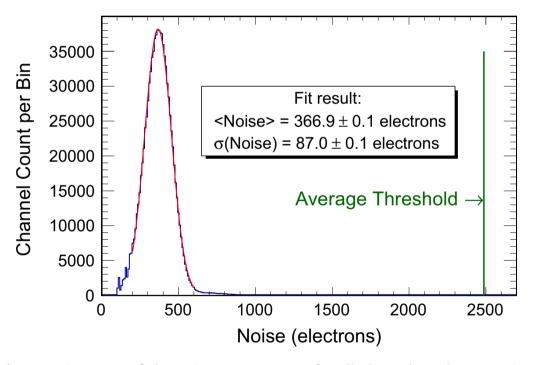
- Rachid
- Genki
- Maya
- Itaru: Feb. 20th -
- Cheng-Wei: End of Feb. -
- Joseph: end of Feb -
- Jaein : ?
- Else?

Hardware debugging, data taking, change setting, logging incidents,...

Analysis


- Once we have a beam, the data taking is 24 hours.
- As long as we have a plan, we'll continue data taking with the INTT standalone DAQ independently from other subsystem data taking.
- The hall access will be coordinated with other subsystems.
- We will be blind immediately without the analysis code and cannot move forward!

Summary


- Various analyses and display codes are required for each measurement in commissioning. Need to prepare all necessary codes in advance!!
- Depending on the results, the INTT operating parameters are determined and the next measurement is made, so results are required immediately. Compared to single ladder analysis, the number of channels and the amount of data are overwhelmingly large.
- Data analysis is not an amount that can be handled on-site. Need feedback from remote analysis crews.
- Since we cannot have every INTT team members to be on-site, the commissioning program is designed to analyze the data remotely and provide feedback to the on-site.
- Volunteers are always welcome!

Monitoring

- 1. Define online monitor. Develop and test anomaly (dead/hot channel) checker.
- 2. Establish flushing anomaly checker results to database.

Fig. 35. Typical calibration data for a single channel (data points), fit with a normal cumulative distribution function.

Fig. 36. Histogram of the noise parameter, σ , for all channels under operating conditions, in a typical calibration run. A Gaussian distribution fit to the data gives a mean noise level of 367 electrons. The nominal discriminator threshold at \sim 2500 electrons is shown by the vertical line.