SiPM characterization

Jaroslav Adam

Czech Technical University in Prague

January 26, 2023

Far-backward meeting

Signal shape and electrical characteristics for a Onsemi SiPM

- Done for MICROFC-SMTPA-30035-GEVB model by Onsemi on a test board
- Active area 3×3 mm², 35 μ m microcell size (4774 microcells), 64% fill factor
- Picosecond laser is used as a light source, signal is sampled by a fast scope
- Capacitance, resistance and leakage current is measured by a LCR meter

Test board

Anode, cathode and capacitive coupling for fast output

Signal readout for the test board

- Cathode (pin 3) is connected to positive bias voltage, 26.8 V in our case
- Standard signal output (Sout) is read at anode (pin 1) across 50 Ω resistor
- Fast output (pin 2) comes via balance-unbalance transformer (balun) on the back of the test board
- The balun transformer maintains 50 Ω impedance for Fout
- Both Sout and pin 2 are connected by lemo cables to 50 Ω scope inputs

Biasing and readout

Laser head and SiPM board

- The SiPM board is connected to custom-made connection board providing filtering capacitor for bias voltage and 50 Ω resistor for standard output
- Active area of SiPM is facing directly the laser
- The laser is Hamamatsu 405 nm diode with pulse duration of \sim 60 ps
- Both the board and laser are placed in a light-tight enclosure

Setup for signal readout

- Signals are sampled by Rigol MSO5104 scope, 100 MHz, 8 GSa/s
- Hamamatsu laser driver supplies the diod for a given frequency of laser pulses
- Laser power was set at a few units above its minimum
- Bias voltage is provided by a standard low voltage power supply

Signal shape for single laser pulses

- Channel 1 (blue) is standard output
- Channel 2 (red) is signal on fast output
- Delay in fast output is caused by longer cable
- Laser frequency is 1 kHz
- Signals are averaged over 1024 triggered samples to reduce the noise
- Nominal performance is achieved even with a very basic setup
- Further investigation is needed for oscillations after the main pulse

Signals with laser at 20 MHz

- Standard output starts to overlap, a large offset is needed for the waveform
- Frequency of scope triggers (Counter box) is exactly the frequency set on laser driver
- Fast output provides clean separate pulses

Signals at 50 MHz

- Laser driver is set at 50 MHz, more than we need
- Scope trigger frequency matches the laser
- Still separate pulses for fast output, only reduced in amplitude (laser power is still the same)

Measurement of impedance for SiPM electrical characteristics

- Complex impedance Z_x is given by voltage V_x of test signal on device under test (DUT) and current I_x flowing through it
- The current is converted to voltage on operating amplifier maintaining 0 V (virtual ground) on Low terminal
- When the bridge is balanced for 0 V at Low, current *I_r* across opamp feedback range resistor *R_r* is exactly equal to the current *I_x* through the DUT
- Both V_x and V_r are vector voltmeters giving two 90° phase components of the voltage
- The procedure is done by Agilent E4980A LCR meter

Auto-balancing bridge

SiPM electrical characteristics by impedance measurement

SiPM represented as Cp-Rp

- The DUT is our 30035 Onsemi SiPM connected by its cathode and anode to High and Low terminals of the Agilent LCR meter
- The LCR provides the test signal to measure the impedance and also the bias voltage
- SiPM is represented by parallel capacitor and resistor circuit (Cp-Rp); given the measured impedance, the values of Cp and Rp are algebraically calculated by the LCR meter

(a) Schematic diagram

(b) Connection image

Connections used for SiPM characteristics

Automated readout for the LCR meter

- Amplitude and frequency of test signal were set to 50 mV and 10 kHz
- The SiPM is in a light-tight enclosure during the measurement
- SiPM capacitance, resistance and leakage current were measured for 120 values of bias voltage from 1 V to 28 V
- At each bias voltage, 12 measurements of SiPM quantities were performed and an average was made
- The procedure is automated using telnet connection to the LCR meter, codes are here: github.com/adamjaro/lmon/tree/master/macro/sipm/Agilent

E4980A

Capacitance and resistance as a function of bias voltage

- Plot shows capacitance Cp and resistance Rp at different values of bias voltage V_{bias}
- Capacitance decreases with voltage as the width of depleted region gets larger
- Resistance has a sharp peak around 24 V where breakdown of individual microcells occurs, consistent with specification
- Signals on the scope were taken at $V_{bias} = 26.8 \text{ V}$

Leakage current as a function of bias voltage

- Besults of the same measurement as for capacitance
- Resistance is shown again for the position of the breakdown
- Leakage (dark) current $I_{\rm DC}$ starts to develop at 1 V above the breakdown
- Consistent with specification
- Overvoltage (voltage above breakdown) of 1 - 5 V is recommended to use
- Negative offset in I_{DC} is likely caused by not applying specific calibrations to the LCR meter

Some of next steps

- Re-do for more SiPM models
- Multichannel analysis for signal timing and amplitude and with a set of scintillators
- Electrical characteristics at various test signal amplitudes