

Single Electron Simulations for Q² Acceptance of tracker

L. Gonella, P. G. Jones, <u>S. Maple</u>, P. R. Newman

Simulation setup

- Concern that ePIC is developing a hole in its Q² coverage:
 - A simplified evaluation of the coverage offered by the tracker alone is performed using single electron events passed through the DD4hep tracking geometry

- 1M electrons generated uniformly in p_{τ} and η for -4< η <4 and 0< p_{τ} <0.5 GeV
 - A further 1M for $0.5 < p_T < 1.5 \text{ GeV}$
- Events passed through geometry and reconstructed with ElCrecon

Reconstruction efficiency in $p_{_{\rm T}}\,vs\,\eta$

 Efficiency is fraction of tracks in a given η-p_T bin that was successfully matched to a truth track during association → does not require reconstruction to be in the same bin

White region

• White region below peak is a result of minimum momentum allowed by truth seeding $\rightarrow p < 0.1$ GeV tossed out

Successful reconstruction at η <-3.5

- Should not be getting 3+ hits for $\eta < -3.5$
 - Efficiency is lost after η =-3.5 but increases again towards η =4
 - Band of efficiency still present after restricting to events with within 5% of the true momentum and within 0.1 of true $\eta \rightarrow any$ inputs on this are welcome

Fraction reconstructed with p within 5% of generated

Electron Kinematics

Slide borrowed From P. Newman

https://indico.bnl.gov/event/18190/contributions/72551/attachm ents/45759/77265/Q2-acceptance.pdf

$$Q_e^2 = 2E_e E'_e (1 + \cos\theta)$$
 $y_e = 1 - \frac{E'_e}{E_e} \sin^2\frac{\theta}{2}$

As $Q^2 \rightarrow 0$, $\vartheta \rightarrow 180^o$, in kinematic peak $(y \rightarrow 0)$ region,

 $Q^2 \rightarrow 2E_e^2(1 + \cos\theta)$

Strong correlation between Q^2 and θ

Weaker correlation between y (or x) and θ

Note that these correlations only depend on the electron beam energy (proton energy is irrelevant)

Coverage in Q^2 and y

- We want as much of the possible events to be in yellow as possible!
 - Mostly the case for $Q^2 > 0.1 \text{ GeV}^2$, y > 0.01 for 5 GeV beam energy
 - Similarly the case for 18 GeV beam energy for $Q^2 > 1 \text{ GeV}^2$
- Only plot events where energy is less than e-beam energy, and y < 0.99

- Performed simulations with single electrons to study Q² coverage of tracker
 - Features of η -p_T plot investigated \rightarrow some understood, further investigation required for far backwards reconstruction
- General Q² coverage of tracker looks good for Q² > 1GeV² and down to 0.1 GeV² for 5GeV e⁻ beam energy