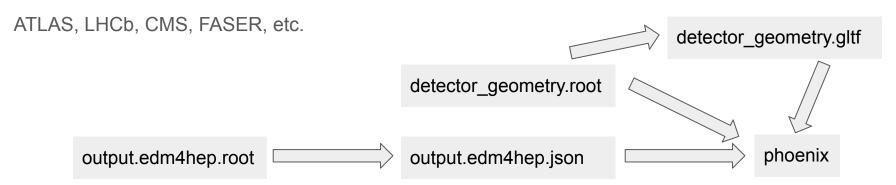
Event Display with HSF/Phoenix


Sakib Rahman University of Manitoba February 23, 2023

Phoenix Event Display (https://github.com/HSF/phoenix)

Experiment independent web-based event display for High Energy Physics developed and maintained by HEP software foundation.

- Allows loading detector geometry in root or json format.
- Allows loading hit collections or edm4hep objects in json format.
- Web-based playground interface available. But we can also create our own instance.

Experiments supported by phoenix:

Run Test Sim

Build epic and export desired geometry

```
./eic-shell
git clone https://github.com/eic/epic
cd epic
cmake -DCMAKE_INSTALL_PREFIX=install -S . -B build
cmake -build build -j 8
cmake -install build
source install/setup.sh
dd_web_display -export epic_tracking_only.xml
```

This will create a geometry file called **detector_geometry.root**

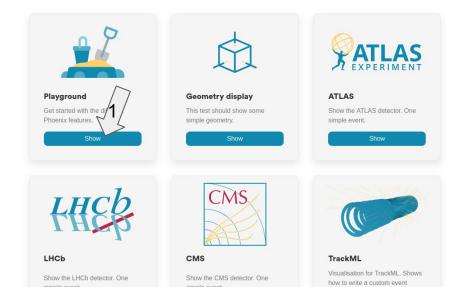
Run test sim

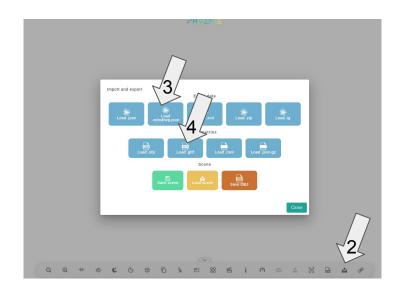
```
ddsim --compactFile epic_tracking_only.xml -G --gun.particle 'pi-' --gun.momentumMin
'1*GeV' --gun.momentumMax '20*GeV' --gun.distribution 'uniform' -N 2000 --outputFile
sim_output.edm4hep.root
```

Convert to json format

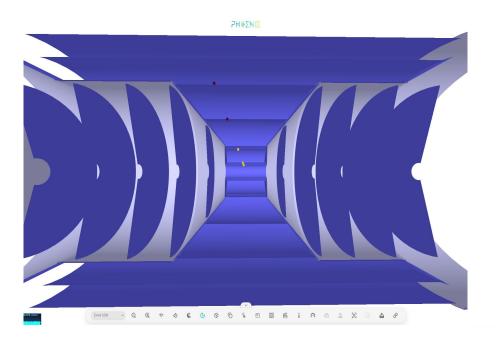
Converting to JSON format

Requires edm4hep>=0.7.2. Currently eic-shell container is at 0.7.0 due to conflicts with root macros. There is a tagged container for testing at this point.


```
singularity pull docker://eicweb/jug_xl:unstable-mr-290-461
singularity run -B <folder containing rootfile> jug_xl_unstable-mr-290-461.sif
edm4hep2json <folder containing rootfile>/sim_output.edm4hep.root -l VertexBarrelHits
-n 100 -o sim_output.edm4hep.json
```

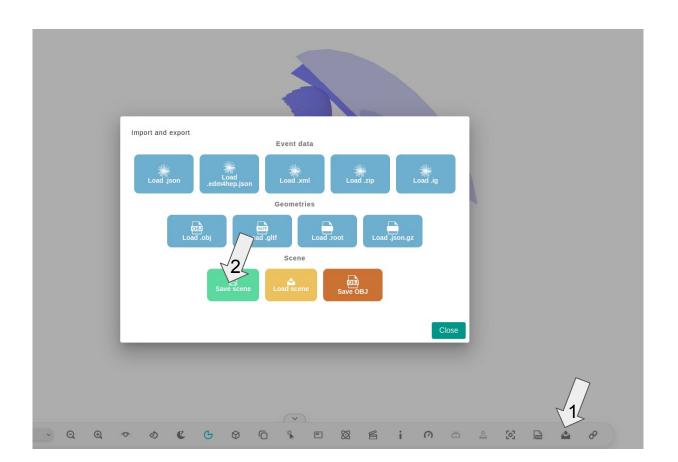

Web Interface

Currently hosted on google cloud platforms here: https://phoenix4eic.uc.r.appspot.com/



Application for visualizing High Energy Physics data.

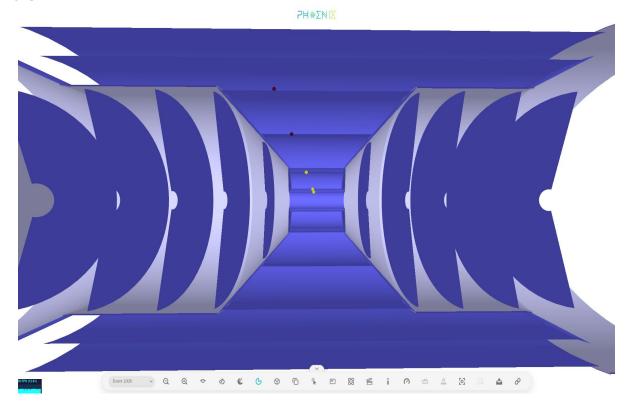
Example Visualizations



Central Tracker Hits

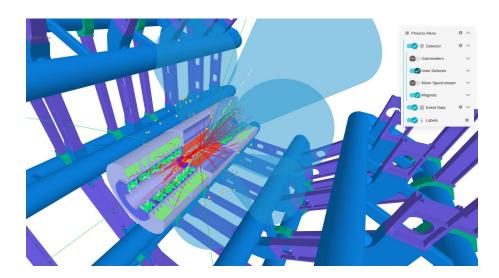
DRICH Hits

You can also save scene with event data to view later


Setting up phoenix locally

Building phoenix (Tested with Ubuntu 22.04 LTS)

```
curl -fsSL https://deb.nodesource.com/setup_lts.x | sudo -E bash -
sudo apt-get install -y nodejs
curl -sL https://dl.yarnpkg.com/debian/pubkey.gpg | gpg --dearmor | sudo tee /usr/share/keyrings
/yarnkey.gpg >/dev/null
git clone https://github.com/hsf/phoenix
cd phoenix
yarn install
yarn start
```


Open a browser and go to http://localhost:4200

Upload the detector geometry in root or json format and the edm4hep json file to phoenix playground

To Do

- Create default geometry views so that only the event json file is needed to be provided by the user
- Incorporating track projections (A RK propagator is provided with phoenix. Need to provide magnetic field info.)
- This is a 0.0 iteration. Plan to slowly integrate user friendly features customized to ePIC. Looking at examples from other projects built on phoenix like ATLAS (shown below).

More information

https://indico.cern.ch/event/916410/contributions/3852667/attachments/2051044/3 437881/Phoenix HSF 04062020.pdf

https://indico.cern.ch/event/941278/contributions/4084836/attachments/2149508/3 623867/Phoenix%20WLCGHSF%202020.pdf