

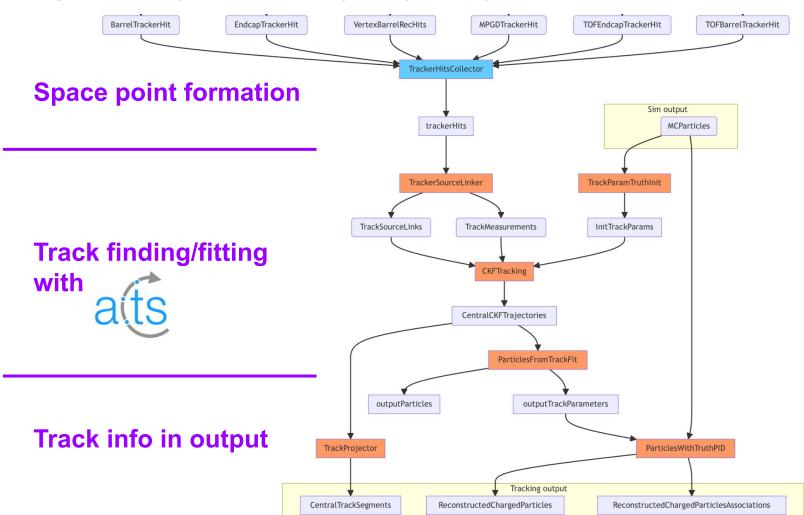
ePIC Track Reconstruction Status

Shujie Li ePIC tracking WG meeting

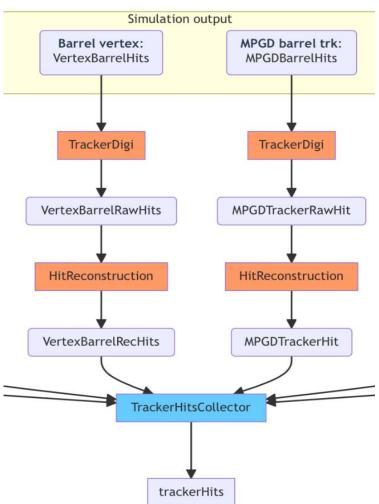
Feb 23, 2023

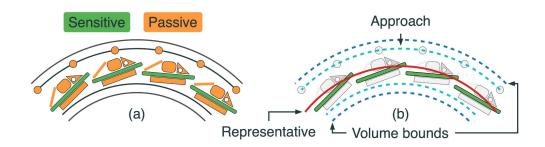
Summary

works

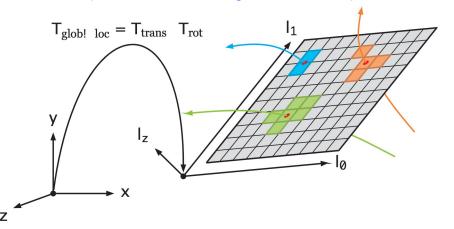

- Generate test particles
- GEANT simulation
 - Detailed geometry
 - □ Digitization at pixel level*
- Hit info to ACTS
- Initial guess for CKF
 - truth params smeared
 - seeding to init params
- CKF track finding/fitting algorithm
- Track params from fit
- Event display
 - □ root script available on github (Shyam)
 - ☐ HSF/Phoenix online server (Sakib)

To finish

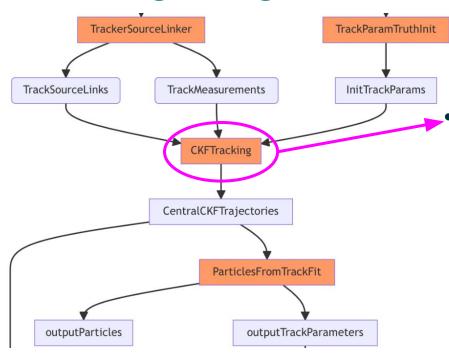

- Hit clustering (Shujie)
 - Smearing at hit rather than pixel level to resolve multi hits
 - clusterization algorithm
- ACTS Seed finding/filter (Rey, Barak)
- Track info from ACTS
 - Raw hits → primary particle association (Barak)
 - Hits used w/track association
 - \square χ^2 , # of measurements to rootfile (Shyam)
- Optimize track quality cuts (Beatrice)
 - χ^2 , # of measurements
- Validation plots
- Background embedding (Kolja)


Track Reconstruction in ElCrecon

Full diagram at https://eic.github.io/EICrecon/#/design/tracking?id=full-diagram

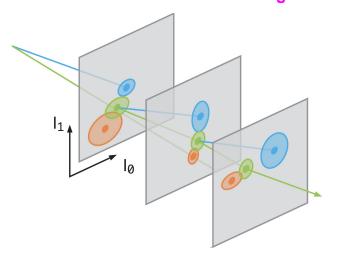


Space Point Formation



- Global / local coord, transformation
- Digitization:
 - Raw hits -> Surface and cell ID
 - Energy deposit threshold:
 - Now: 0, to use: 110 electrons
 - Clustering algorithm available at https://github.com/acts-project/acts/pull/1190 (Louis-Guillaume Gagnon, March 9th)

Track Finding/Fitting with ACTS


ElCrecon: JANA2 based recon framework

ElCrecon factory (interface)

ACTS: CKF Algorithm

Combinatorial Kalman Filter (CKF)

- combine track finding and fitting
- allows track branching
 - → user-defined measurement selector (number, chi2)
- high efficiency
- Need a reasonable "initial guess"

Hits selection

acts/Core/include/Acts/TrackFinding/MeasurementSelector.hpp

CKF:

if no hits on surface→ nHoles++

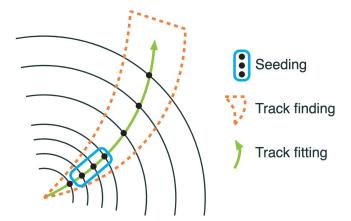
for (track state : track state candidates):

Track state → hits on surface

Calculate chi2 of all hits and rank, find chi2min

if chi2min > chi2CutOff → save chi2min as outlier

<chi2CutOff → save up to numMeasurementsCutOff candidates</p>


```
9  namespace eicrecon {
10    struct CKFTrackingConfig {
11         std::vector<double> m_etaBins = {}; // {this, "etaE
12         std::vector<double> m_chi2CutOff = {15.}; //{this, "
13         std::vector<size_t> m_numMeasurementsCutOff = {10};
14    };
15 }
```

of sensitive surfaces = nHoles + nMeasurements + nOutliers

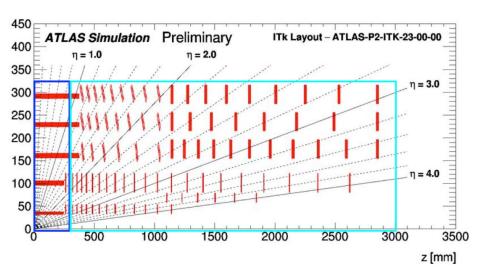
Initial Guess for CKF: 2. realistic seeding

Seeder: a set of three space points to estimate initial track parameters

- Binned seeder: loop over φ-z binning to try all combinations. Slow at large η
 - tested and bugs fixed. See <u>YueShi Lai's</u> work
- Orthogonal seed finder: can efficiently search for space points within a given range.
 - Initial implementation in ElCrecon Joe Osborn
 - Seeder configuration:
 - default parameters from binned seeder
 - parameter optimization See Rey Cruz-Torres's work

Parameter	Description
bFieldInZ	z component of magnetic field
rMax	Maximum r value to look for seeds
rMin	Minimum r value to look for seeds
zMin	Minimum z value to look for seeds
zMax	Maximum z value to look for seeds
beamPosX	Beam offset in x
beamPosY	Beam offset in y
deltaRMinTopSP	Min distance in r between middle and top SP in one seed
deltaRMinBottomSP	Min distance in r between middle and bottom SP in one seed
deltaRMaxTopSP	Max distance in r between middle and top SP in one seed
deltaRMaxBottomSP	Max distance in r between middle and top SP in one seed
collisionRegionMin	Min z for primary vertex
collisionRegionMax	Max z for primary vertex
cotThetaMax	Cotangent of max theta angle
minPt	Min transverse momentum
maxSeedsPerSpM	Max number of seeds a single middle space point can belong to - 1
sigmaScattering	How many standard devs of scattering angles to consider
radLengthPerSeed	Average radiation lengths of material on the length of a seed

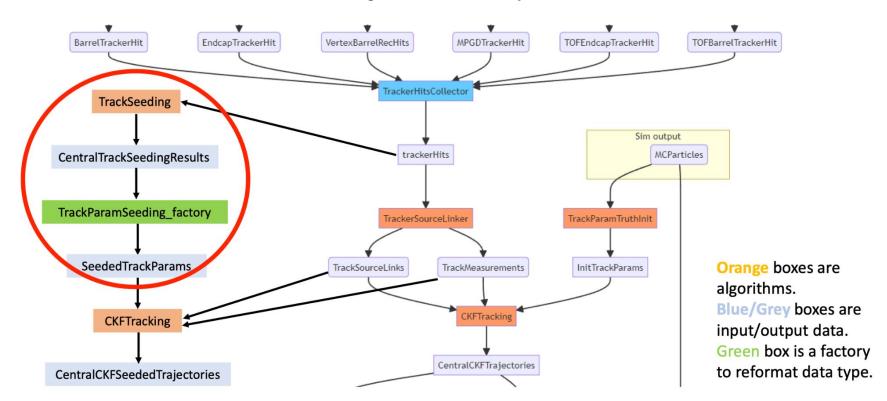
Seeder confirmation/filter


Initial Guess for CKF: 2. realistic seeding

Seed Confirmation/Filter

Individual filter settings for each geometry region.

- Experience from ATLAS-ITK, see <u>Luis Falda Coelho's work</u>
- implementation in ElCrecon, **TBD** Rey, Barak Schmookler


```
r [mm]
centralSeedConfirmationRange = acts.SeedConfirmationRang
    zMinSeedConf=-250 * u.mm,
    zMaxSeedConf=250 * u.mm
    rMaxSeedConf=140 * u.mm,
   nTopForLargeR=1,
   nTopForSmallR=2,
    seedConfMinBottomRadius=60.0 * u.mm.
    seedConfMaxZOrigin=150.0 * u.mm,
    minImpactSeedConf=1.0 * u.mm,
  # contains parameters for seed confirmation
forwardSeedConfirmationRange = acts.SeedConfirmationRang
    zMinSeedConf=-3000 * u.mm.
    zMaxSeedConf=3000 * u.mm,
    rMaxSeedConf=140 * u.mm,
    nTopForLargeR=1,
    nTopForSmallR=2,
    seedConfMinBottomRadius=60.0 * u.mm,
    seedConfMaxZOrigin=150.0 * u.mm,
    minImpactSeedConf=1.0 * u.mm,
```


Initial Guess for CKF: 2. realistic seeding

Supply realistic init parameters to CKF

- CKF with realistic seeding in addition to truth seeding. See <u>Barak's work</u>
 - retain data structure for current downstream analysis
- Switch between truth / realistic seeding. TBD. See <u>Dmitry's work</u>

Track Info in Output

- Track parameters from fit Done
- Track projection Done
- Trajectory info (chi2, number of hits ...)
 - save to histograms with ElCrecon plugins
 - save to output rootfile:
 - **TBD**: write an ElCrecon factory to write trajectory info into data structure
- TBD: Hits associated with tracks

```
size_t nStates = 0;
                                     size_t nMeasurements = 0;
                                     size t nOutliers = 0;
                                     size t nHoles = 0;
                                     double objectim - 0.
                                 trajectory info from ACTS mentChi2 = {};
                                     std::vector<double> outlierChi2 = {};
                                     size_t NDF = 0;
                                     std::vector<unsigned int> measurementVolume = {};
                                     std::vector<unsigned int> measurementLayer = {};
                                     std::vector<unsigned int> outlierVolume = {};
                                     std::vector<unsigned int> outlierLayer = {};
                                     size_t nSharedHits = 0;
                                  };
eicd::Trajectory:
 Description: "Raw trajectory from the tracking algorithm"
 Author: "S. Joosten, S. Li"
 Members:
   - uint32 t
                      type
   - uint32 t
                      nStates
                                       // Number of tracking steps
   - uint32_t
                                      // Number of hits used
                      nMeasurements
                      nOutliers
                                      // Number of hits not considered
   - uint32_t
   - uint32 t
                      nHoles
                                      // Number of missing hits
   float
                      chi2
                                      // Total chi2
   - uint32 t
                      ndf
                                       // Number of degrees of freedom
   - uint32_t
                      nSharedHits
                                       // Number of shared hits with other trajectories
 VectorMembers:
   - float
                      measurementChi2
                                      // Chi2 for each of the measurements
                                      // Chi2 for each of the outliers
   - float
                      outlierChi2
 OneToOneRelations:
   - eicd::TrackParameters trackParameters // Associated track parameters, if any
 OneToManyRelations:
                                      // Measurement hits used in this trajectory
                                                                                                 10
   - eicd::TrackerHit measurementHits
   - eicd::TrackerHit outlierHits
                                      // Outlier hits not used in this trajectory
```

struct TrajectoryState {

MCParticle-Hits Association

See Barak's work

(vector <ed< th=""><th colspan="3">(vector<edm4hep::simtrackerhitdata>)0x393a8f0</edm4hep::simtrackerhitdata></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></ed<>	(vector <edm4hep::simtrackerhitdata>)0x393a8f0</edm4hep::simtrackerhitdata>										
17401064	350562865439	1705175380	1495786141	1740106434	1747368519	1742724194	174390637	1744413049	1745989302	1743512326942	16211
	0.00005	0.000011	0.000018	0.000011	0.000106	0.000013	0.000025	0.000037	0.000023	0.000078	
	0	, 0	0	1073741824	1073741824	1073741824	107374182	1073741824	1073741824	1073741824	10
	-30.1701	-40.2047	-100.186	-30.1782	-28.8245	-27.4767	-28.8427	-27.407	-28.6091	-27.4422	
	37.1742	49.5744	123.963	37.1548	34.5338	36.2218	35.8026	35.616	35.0633	35.9978	
	0	0	0	0	0	0	0	0	0	0	
nID	1	1	1	1	1	1	1	1	1	1	
		17401064350562865439 0.00005 0 -30.1701 37.1742	17401064350562865439 1705175380 0.00005 0.000011 0 0 -30.1701 -40.2047 37.1742 49.5744 0 0	17401064350562865439 170517538 1495786141 0.00005 0.000011 0.000018 0 0 0 -30.1701 -40.2047 -100.186 37.1742 49.5744 123.963 0 0 0	17401064350562865439 170517538 1495786141 1740106434 0.00005 0.000011 0.000018 0.000011 0 0 0 1073741824 -30.1701 -40.2047 -100.186 -30.1782 37.1742 49.5744 123.963 37.1548 0 0 0 0	17401064350562865439 170517538 1495786141 1740106434 1747368519 0.00005 0.000011 0.000018 0.000011 0.000106 0 0 1073741824 1073741824 -30.1701 -40.2047 -100.186 -30.1782 -28.8245 37.1742 49.5744 123.963 37.1548 34.5338 0 0 0 0 0	17401064350562865439 170517538 1495786141 1740106434 1747368519 1742724194 0.00005 0.000011 0.000018 0.000011 0.000106 0.000013 0 0 1073741824 1073741824 1073741824 -30.1701 -40.2047 -100.186 -30.1782 -28.8245 -27.4767 37.1742 49.5744 123.963 37.1548 34.5338 36.2218 0 0 0 0 0 0	17401064350562865439 170517538 1495786141 1740106434 1747368519 1742724194 174390637 0.00005 0.000011 0.000018 0.000011 0.000106 0.000013 0.000025 0 0 1073741824 1073741824 1073741824 107374182 -30.1701 -40.2047 -100.186 -30.1782 -28.8245 -27.4767 -28.8427 37.1742 49.5744 123.963 37.1548 34.5338 36.2218 35.8026 0 0 0 0 0 0 0 0	17401064350562865439 170517538 1495786141 1740106434 1747368519 1742724194 174390637 1744413049 0.00005 0.000011 0.000018 0.000011 0.000106 0.000013 0.000025 0.000037 0.000037 0.000025 0.000025 0.00002	17401064350562865439 170517538 1495786141 1740106434 1747368519 1742724194 174390637 174441304£ 1745989302	17401064350562865439 170517538 1495786141 1740106434 1747368519 1742724194 174390637 1744413045 1745989302 1743512326942 0.00005

segmentation defined in each detector xml file

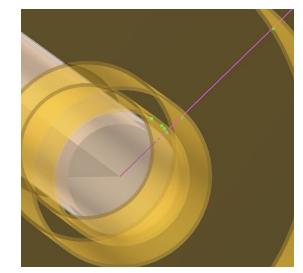
3 primary hits on 3 vertex layers with quality = 0

quality>0 means hits from secondaries **BUT** those secondaries didn't pass dd4hep cut **10 MeV**, so the are **NOT** saved in MCparticle.
⇒Those hits are linked back to primary
(parent) particles.

<readout name="VertexBarrelHits">

<segmentation type="CartesianGridXY" grid_size_x="0.010*mm" grid_size_y="0.010*mm" />

<id>system:8, layer:4, module:12, sensor:2, x:32:-16, y:-16</id>

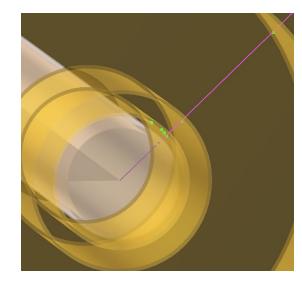

MCParticle-Hits Association

See Barak's work

VertexBarrelHits	(vector <edm4hep::simtrackerhitdata>)0x393a8f0</edm4hep::simtrackerhitdata>										
VertexBarrelHits.cellID	17401064350562865439	1705175386	1495786141	1740106434	1747368519	1742724194	174390637	1744413049	1745989302	1743512326942°	16211
VertexBarrelHits.EDep	0.00005	0.000011	0.000018	0.000011	0.000106	0.000013	0.000025	0.000037	0.000023	0.000078	
VertexBarrelHits.quality	0	0	0	1073741824	1073741824	1073741824	107374182	1073741824	1073741824	1073741824	10
VertexBarrelHits.position.x	-30.1701	-40.2047	-100.186	-30.1782	-28.8245	-27.4767	-28.8427	-27.407	-28.6091	-27.4422	
VertexBarrelHits.position.z	37.1742	49.5744	123.963	37.1548	34.5338	36.2218	35.8026	35.616	35.0633	35.9978	
VertexBarrelHits#0.index	0	, 0	0	0	0	0	0	0	0	0	
VertexBarrelHits#0.collectionID	1	1	1	1	1	1	1	1	1	1	

use index to access associated particle/initial track

```
= (vector<edm4hep::MCParticleData>*)0x14aece590
MCParticles
MCParticles.PDG = 11, 11, 22, 11
MCParticles.generatorStatus = 1, 0, 0, 0
MCParticles.simulatorStatus = 16777216, 1493172224, 1358954496, 1493172224
MCParticles.charge = -1.000000, -1.000000, 0.000000, -1.000000
MCParticles.time = 0.000000, 2.127509, 3.376798, 3.537263
MCParticles.mass = 0.000510999, 0.000510999, 0, 0.000510999
MCParticles.vertex.x = 0, -364.581, -571.663, -597.841
MCParticles.vertex.y = 0, 252.174, 409.991, 430.794
MCParticles.vertex.z = 0, 458.511, 727.721, 762.307
MCParticles.momentum.x = -3.197403, -0.001730, -0.027344, -0.000472
MCParticles.momentum.y = 2.071061, 0.003967, 0.021631, -0.000350
MCParticles#0 = (vector<podio::ObjectID>*)0x14aeb2130
MCParticles#0.index = 0, 0, 0
MCParticles#0.collectionID = 1, 1, 1
```



MCParticle-Hits Association

See Barak's work

VertexBarrelHits	(vector <edm4hep::simtrackerhitdata>)0x393a8f0</edm4hep::simtrackerhitdata>										
VertexBarrelHits.cellID	17401064350562865439	1705175380	1495786141	1740106434	1747368519	1742724194	174390637	1744413049	1745989302	1743512326942	16211
VertexBarrelHits.EDep	0.00005	0.000011	0.000018	0.000011	0.000106	0.000013	0.000025	0.000037	0.000023	0.000078	
VertexBarrelHits.quality	0	0	0	1073741824	1073741824	1073741824	107374182	1073741824	1073741824	1073741824	10
VertexBarrelHits.position.x	-30.1701	-40.2047	-100.186	-30.1782	-28.8245	-27.4767	-28.8427	-27.407	-28.6091	-27.4422	
VertexBarrelHits.position.z	37.1742	49.5744	123.963	37.1548	34.5338	36.2218	35.8026	35.616	35.0633	35.9978	
VertexBarrelHits#0.index	0	0	0	0	0	0	0	0	0	0	
VertexBarrelHits#0.collectionID	1	1	1	1	1	1	1	1	1	1	

Solutions to multi-hits:

- 1. reject secondaries by quality and index values
- clusterization algorithm in ACTS https://github.com/acts-project/acts/blob/main/Core/include/Acts/Clusterization/Clusterization.hpp

