Centrality definition and nuclear structure study; Using the BeAGLE model

Niseem Magdy and Wenliang Li niseemm@gmail.com

* Stony Brook Nuclear Chemistry Heavy Ion Group

https://www.star.bnl.gov/~jjiastar/index.html
Our research is focused on understanding:

1) The transport properties of the QGP
2) The heavy ion collisions' initial state
3) The shape of atomic nuclei in heavy ion collisions

Our research is carried out at:

1) The Relativistic Heavy Ion Collider (RHIC), the STAR experiment
2) The Large Hadron Collider, the ATLAS experiment

Publication
Niseem Magdy[**] Roy Lacey[*] Jiangyong Jia[*]
$>$ The centrality had been studied before.
$>$ More detailed studies are done considering:
\checkmark Neutrons from different processes
\checkmark Gamma from π^{0} decay
\checkmark Correlations between ZDC energy and impact parameter

PRD 106, 012007 (2022)
$>$ EIC can be a unique tool for understanding the nuclear structure
\checkmark Understanding the nuclear deformation
\checkmark Understanding the α clustering

* The detector's acceptance:

Caption text

Detector	Acceptance	Notes
Zero-Degree Calorimeter (ZDC)	$\theta<5.5 \mathrm{mrad}(\eta>6)$	About 4.0 mrad at $\phi \sim \pi$
Roman Pots (2 stations)	$0.0^{*}<\theta<5.0 \mathrm{mrad}(\eta>6)$	$0.65<p_{-}(z$, nucleon $) / p_{-}(z$, beam $)<1.0--* 10 \sigma$ cut
Off-Momentum Detectors (2 stations)	$0.0<\theta<5.0 \mathrm{mrad}(\eta>6)$	Roughly $0.3<p_{-}(z$, nucleon $) / p_{-}(z$, beam $)<0.6$
B0 Detector	$5.5<\theta<20.0 \mathrm{mrad}(4.6<\eta<5.9)$	Silicon tracking + EM preshower

$>$ In this current study, we are using: ZDC, Roman Pots (RP), and B_{0}

The BeAGLE model is used in the current study

PRD 106, 012007 (2022)

The BeAGLE model:

$d \equiv \int d z \rho / \rho_{0}$
from $Z_{\text {first-collision }} \rightarrow \infty$

A hybrid model consisting of DPMJet and PYTHIA with nPDF EPS09.

Nuclear geometry by
DPMJet and nPDF provided by EPS09.
Parton level interaction and jet fragmentation completed in PYTHIA.
Nuclear evaporation (gamma dexcitation/nuclear fission/fermi break up) treated by DPMJet
Energy loss effect from routine by Salgado\&Wiedemann to simulate the nuclear fragmentation effect in cold nuclear matter

Particles in the model:

$>\mathrm{X}=0,2$ create in hard collisions not affected by internuclear cascade (INC))
$\Rightarrow \mathrm{X}=3$ Create in the evaporation process
$>\mathrm{X}>11$ Particles created during the Intra-nuclear cascade

Can we use the neutrons in ZDC to cut on the impact parameter?

* Neutrons in ZDC in central collisions

$$
E_{Z D C}=\sum_{h i t=0}^{N} E_{h i t}
$$

> Many peaks from evaporation processes.
> Can evaporation neutrons be used to study centrality?

* Can γ affect the centrality given by the ZDC
$>$ Small contributions from the γ to ZDC energy
$>\mathrm{ZDC}$ and B 0 can be used to construct the π^{0}
$>$ We can remove γ from the π^{0} if needed

$>$ The p_{T} of the neutrons in ZDC
$>\mathrm{X}=$ All neutrons created in all process
$>\mathrm{X}=0,2$ neutrons created in hard collisions
$>\mathrm{X}=3$ neutrons created in the evaporation process

As expected evaporation neutrons are low p_{T} particles
\rangle Correlations of the $\left\langle E_{Z D C}\right\rangle$ and impact parameter
$>\mathrm{X}=$ All neutrons created in all process
$>\mathrm{X}=0,2$ neutrons created in hard collisions
$>\mathrm{X}=3$ neutrons created in the evaporation process

Neutrons from all sources can be used for centrality definition
\rangle Correlations of the $\left\langle E_{Z D C}\right\rangle$ and impact parameter with 4% energy smearing

The ratio of ZDC Energy with a smear of 4% shows no change

Conclusions

We investigated the ability of the ZDC to be used in the centrality definition. In addition, we investigated the ability to use the Forwarded rapidity detector to investigate the nuclear shape:
$>$ Neutrons from all sources can be used for centrality definition.
$>$ An energy smear of 4% shows no change on the $\left\langle E_{Z D C}\right\rangle$ and impact parameter correlation.
$>$ Forwarded rapidity and nuclear shape The shape of the nucleus in nuclear physics
is often modeled through a nucleon density
profile of the Woods-Saxon $\rho(r, \theta, \phi)$.
$>Y_{n, 0}$ are spherical harmonics
$>\beta_{n}$ are deformation parameters
\checkmark n=2 -> Quadrupole
\checkmark n=3 -> Octupole
\checkmark n=4 -> Hexadecapole

$$
\rho(r, \theta, \phi)=\frac{\rho_{0}}{1+e^{\left[r-R(\theta, \phi) / a_{0}\right]}}
$$

$$
R(\theta, \phi)=R_{0}\left(1+\beta_{2} Y_{2,0}(\theta, \phi)+\beta_{3} Y_{3,0}(\theta, \phi)+\beta_{4} Y_{4,0}(\theta, \phi)\right)
$$

$>$ Forwarded rapidity and nuclear shape

Impact parameter

We will look to

Neutrons in ZDC

Neutrons in \mathbf{B}_{0}

Protons in RP

- Deformed $\mathrm{Pb}\left(\beta_{2}>0\right.$ and $\left.\beta_{4}>0\right)$ is used for this exercise

Measurements related to the impact parameter will be sensitive to the nuclear shape.

$>$ Deformed $\mathrm{Pb}\left(\beta_{2}=0.28\right)$

\checkmark The ratio of the undeformed to deformed Pb

Neutrons and Protons from all sources in forward rapidity show sensitivity to β_{2} deformation in centrality $>50 \%$.
$>$ Deformed $\mathrm{Pb}\left(\beta_{4}=0.093\right)$
\checkmark The ratio of the undeformed to deformed Pb

Neutrons and Protons from all sources in forward rapidity show sensitivity to β_{4} deformation in different centrality selections.
$>\operatorname{Deformed} \mathrm{Pb}\left(\beta_{2}=0.28, \beta_{4}=0.093\right)$
\checkmark The ratio of the undeformed to deformed Pb

Neutrons and Protons from all sources in forward rapidity show sensitivity to β_{2} and β_{4} deformation in different centrality selections.

- Ongoing work

$>$ Expand the study into a full simulation study
$>$ What can we learn about the nuclear shape and structure (α clustering)
\checkmark Can α particles be the building block of some nuclei?
\checkmark No direct experimental evidence has ever been provided.
This a long-standing question that EIC can answer

Nature Communications, 13, 2234 (2022)
$>$ We are putting additional efforts into the simulation in this avenue \checkmark Using forwarded physics (ZDC, B_{0}, and RP)
\checkmark Using midrapidity physics

Conclusions

We investigated the ability of the ZDC to be used in the centrality definition. In addition, we investigated the ability to use the Forwarded rapidity detector to investigate the nuclear shape:
$>$ Neutrons from all sources can be used for centrality definition.
$>$ The Forwarded rapidity detectors are sensitive to nuclear deformation.
$>$ Ongoing work to understand:
\checkmark Nuclear shape (deformation)
\checkmark Nuclear structure (α clustering)

Thank You

