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Experiment - Standard Model Theory = difference

SM Contribution Value±Error (×1011) Ref
QED (5 loops) 116584718.951± 0.080 [Aoyama et al., 2012]

HVP LO 6923± 42 [Davier et al., 2011]

6949± 43 [Hagiwara et al., 2011]

HVP NLO −98.4± 0.7 [Hagiwara et al., 2011]

[Kurz et al., 2014]

HVP NNLO 12.4± 0.1 [Kurz et al., 2014]

HLbL 105± 26 [Prades et al., 2009]

HLbL (NLO) 3± 2 [Colangelo et al., 2014]

Weak (2 loops) 153.6± 1.0 [Gnendiger et al., 2013]

SM Tot (0.42 ppm) 116591802± 49 [Davier et al., 2011]

(0.43 ppm) 116591828± 50 [Hagiwara et al., 2011]

(0.51 ppm) 116591840± 59 [Aoyama et al., 2012]

Exp (0.54 ppm) 116592080± 63 [Bennett et al., 2006]

Diff (Exp−SM) 287± 80 [Davier et al., 2011]

261± 78 [Hagiwara et al., 2011]

249± 87 [Aoyama et al., 2012]

3



New experiments+new theory=new physics

Fermilab E989 early 2017, aims for 0.14 ppm

J-PARC E34 late 2010’s-2020, aims for 0.3-0.4 ppm

Today aµ(Expt)-aµ(SM) ≈ 2.9− 3.6σ

If both central values stay the same,

E989 (∼ 4× smaller error) → ∼ 5σ
E989+new HLBL theory (models+lattice, 10%) → ∼ 6σ
E989+new HLBL +new HVP (50% reduction) → ∼ 8σ

Good for discriminating models if discovery of BSM at LHC
[Stckinger, 2013]

Lattice calculations important to trust theory errors
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+

The blobs (quark loops), which represent all possible intermediate
hadronic states (ρ, ππ, . . . ) are not calculable in perturbation
theory, but can be calculated from

dispersion relation + experimental cross-section for
e+e− → hadrons

first principles using lattice QCD
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Dispersive method [Bouchiat and Michel (1961); Durand (1962); ...]

The vacuum polarization (blob) is an analytic function.

Π(q2) =
1

π

∫ ∞

0
ds
=Π(s)

(s − q2)

σtotal(e
+e− → hadrons) =

4π2α

s

1

π
=Π(s)

(by the optical theorem) which leads to

aµ(HVP) =
1

4π2

∫ ∞

4m2
π

ds K (s)σtotal(s)

aµ(HVP) ∼ 693(4) (0.6% error, but largest contribution to
SM value)

σtotal(S) also from τ → π±π0ν (needs isospin correction)
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Lattice QCD method [Blum, 2003, Lautrup et al., 1971]

+
Using lattice QCD and continuum, ∞-volume pQED

aµ(HVP) =
(α
π

)2 ∫ ∞

0
dq2 f (q2) Π̂(q2)

f (q2) is known, Π̂(q2) is subtracted HVP, Π̂(q2) = Π(q2)− Π(0),
computed directly on the lattice

Πµν(q) =

∫
e iqx〈jµ(x)jν(0)〉 jµ(x) =

∑

i

Qi ψ̄(x)γµψ(x)

= Π(q2)(qµqν − q2δµν)
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Simulation details

Gauge field ensembles generated by RBC/UKQCD collaborations

Möbius Domain wall fermions: chiral symmetry at finite a

Iwasaki Gauge action (gluons)

Range of pion (quark) masses mπ = 140, 170, 330, 420 MeV

Range of lattice spacings, a = 0.144, 0.114, 0.086 fm

Range of lattice sizes, L/a = 16, 24, 32, 48, 64

Range of lattice volumes, (1.8)3, (2.7)3, (4.6)3, (5.5)3 fm3

Use all-mode-averaging technique [Izubuchi et al., 2013]
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Quark Connected Contribution to HVP

Two orders of magnitude larger than disconnected

Relatively harder: need (sub) percent accuracy

Current calculations, >∼ 2% error [Chakraborty et al., 2016]

Finite volume effects significant barrier [Aubin et al., 2015]

lots of activity by many groups

RBC/UKQCD on-going calculation at the physical point.
Sub-1% stat errors appear feasible. a, FV, QED/isospin
breaking effects
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483 physical point Möbius-DWF ensemble, 64 configurations
(separated by 40 trajectories)

Π(q2)− Π(0) =
∑

t

(
cos(qt)− 1

q2
+

1

2
t2
) ∑

i Cii (t,~0)

3

aµ integrand aµ =
∑T

t w(t)C (t)
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483 physical point Möbius-DWF ensemble, 64 configurations
(separated by 40 trajectories)

FV effects from 2 π state (talk of C. Aubin, [Aubin et al., 2015])

aµ(A144)− aµ(A1) aµ(T )−+ 2 pion contrib.
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Request for 2016-2017 AY

To compute on 643, physical point, Möbius-DWF ensemble
for a→ 0 limit

Table: Resource request. Timings (per configuration) for the 643

calculation estimated from the 483 HVP calculation on Pi0. “exact
solves” includes 1 deflated light quark propagator and 10 strange quark
propagators.

quantity core-hours

eigenvectors 310.7 K
sloppy solves 132.7 K
exact solves 30.0K

LMA 116.5 K
I/O 7.1 K

total 597.0 K

50 configs → 64.5 M JPsi core-hrs (30 sets of evecs from ALCC)
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Disconnected HVP contribution to g-2

quark-disconnected diagrams notoriously diffcult

Expected to be small (vanishes in SU(3) limit)

Still important to reach (sub-) percent precision

Physical pion mass Möbius-DWF ensemble RBC/UKQCD

use all-to-all quark propagator strategy [Foley et al., 2005], separate
low and high modes of the Dirac operator (quark propagator).
Treat the low modes exactly, high stochastically

Until our recent calculation statistically unresolved

(degenerate)light - strange difference computed directly
(Mainz Group [Gulpers et al., 2014])
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Disc. HVP contribution to g-2 (C. Lehner) [Blum et al., 2015]

Low mode separation crucial since light- strange don’t cancel

contributions above ms suppressed

(sparse) random sources effective for high modes

Π(q2)− Π(0) =
∑

t

(
cos(qt)− 1

q2
+

1

2
t2
)
C (t)
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FIG. 5. The sum of LT and FT defined in Eqs. (13) and (14)

has a plateau from which we read o↵ a
HVP (LO) DISC
µ . The

lower panel compares the partial sums LT for all values of

T with our final result for a
HVP (LO) DISC
µ with its statistical

error band.

we report our final result

aHVP (LO) DISC
µ = �9.6(3.3)(2.3) ⇥ 10�10 , (15)

where the first error is statistical and the second system-
atic.

Before concluding, we note that our result appears to
be dominated by very low energy scales. This is not sur-
prising since the signal is expressed explicitly as di↵er-
ence of light-quark and strange-quark Dirac propagators.
We therefore expect energy scales significantly above the
strange mass to be suppressed. We already observed this
above in the dominance of low modes of the Dirac opera-
tor for our signal. Furthermore, our result is statistically
consistent with the one-loop ChPT two-pion contribution
of Fig. 6.

CONCLUSION

We have presented the first ab-initio calculation of the
hadronic vacuum polarization disconnected contribution
to the muon anomalous magnetic moment at physical
pion mass. We were able to obtain our result with modest
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FIG. 6. The leading-order pion-loop contribution in finite-
volume ChPT as function of volume.

computational e↵ort utilizing a refined noise-reduction
technique explained above. This computation addresses
one of the major challenges for a first-principles lattice
QCD computation of aHVP

µ at percent or sub-percent pre-
cision, necessary to match the anticipated reduction in
experimental uncertainty. The uncertainty of the result
presented here is already slightly below the current ex-
perimental precision and can be reduced further by a
straightforward numerical e↵ort.
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−(9.6± 3.3)× 10−10 or about 1.5% of total at 3 σ level
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Disconnected HVP contribution to g-2, systematics

non-zero lattice spacing: proxy strange-connected 5%

FV, ChiPT [Aubin et al., 2015, Della Morte and Juttner, 2010]: 14.6%
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above Wick contractions, we can represent it as a sum
over individual exponentials C(t)+Cs(t) =

P
m cme�Emt

with cm 2 R and Em 2 R+. The coe�cients cm can
be negative because positivity arguments only apply to
some individual Wick contractions in Eq. (12) but not
necessarily to the sum.

We show C(t) and Cs(t) obtained in our lattice QCD
computation in Fig. 3. Starting from time-slices 17, 18
the correlator C(t) is not well resolved from zero, how-
ever, from time-slices 11 to 17 a two-state fit including the
⇢(770) and �(1020) describes C(t)+Cs(t) well. Here the ⇢
is a proxy for combined ⇢ and ! contributions due to their
similar energy. Since these states are not stable in our
lattice simulation, however, this representation using in-
dividual exponentials only serves as a model that fits the
data well. Since this model will only enter our systematic
error estimate, we find this imperfection to be acceptable.
A systematic study of di↵erent fit ranges is presented in
Fig. 4, where p-values greater than 0.05 are found for all
fit-ranges t 2 [tmin, . . . , 17] with tmin 2 [8, . . . , 12].

We now define the partial sums

LT =

TX

t=0

wtC(t) , (13)

FT (r) =

tmaxX

t=T+1

wt(c
r
⇢e

�E⇢t + cr
�e�E�t � Cs(t)) , (14)

where cr
⇢ and cr

� are the parameters of the fit with fit-
range r and tmax = 24 for our setup. For su�ciently large
T , LT is expected to exhibit a plateau region as function

of T from which we can determine a
HVP (LO) DISC
µ . The

sum LT +FT is also expected to exhibit such a plateau to
the extent that the model in FT describes the data well.

Based on Fig. 4, we choose r = [11, . . . , 17] as pre-
ferred fit-range to determine FT but a cross-check with
r = [12, . . . , 17] has been performed yielding a consis-
tent result. Figure 5 shows the resulting plateau-region
for LT and LT + FT . In order to avoid contamina-
tion of our first-principles computation with the model-

dependence of FT , we determine a
HVP (LO) DISC
µ from

LT=20 and include FT=20 as systematic uncertainty esti-
mating a potentially missing long-time tail. We choose
the value at T = 20 since it appears to be safely within
a plateau region but su�ciently far from T = 24 to
suppress backwards-propagating e↵ects [32]. We find

a
HVP (LO) DISC
µ = �9.6(3.3) ⇥ 10�10.

We expect the finite lattice spacing and finite simula-
tion volume as well as long-time contributions to Eq. (9)
to dominate the systematic uncertainties of our result.
With respect to the finite lattice spacing a reasonable
proxy for the current computation may be our HVP
connected strange-quark analysis [33] for which the 483

result at a�1 = 1.73 GeV agrees within O(5%) with
the continuum-extrapolated value. This is also consis-
tent with a näıve O(a2⇤2

QCD) power counting, appropri-
ate for the domain-wall fermion action used here. The
combined e↵ect of the finite spatial volume and poten-
tially missing two-pion tail is estimated using a one-loop
finite-volume lattice-regulated chiral perturbation theory
(ChPT) version of Eq. (5.1) of Ref. [31]. Our ChPT
computation also agrees with Eq. (2.12) of Ref. [34] af-
ter correcting for a missing factor of two in the first
version of Ref. [34]. The ChPT result is then trans-
formed to position space to obtain C(t). Fig. 6 shows
a corresponding study of LT for di↵erent volumes. We
take the di↵erence of LT=20 on the 483 ⇥ 96 lattice used
here and LT=48 on the 963 ⇥ 192 lattice and obtain
�aFV,⇡⇡

µ = 1.4 ⇥ 10�10. The remaining long-time ef-
fects are estimated by FT=20. We compare the result
for two fit-ranges FT=20([11, . . . , 17]) = �1.1(6) ⇥ 10�10

and FT=20([12, . . . , 17]) = �0.6(0.9)⇥10�10. We conser-
vatively take the one-sigma bound �aFT = 1.7⇥10�10 as
additional uncertainty.

Combining the systematic uncertainties in quadrature,

−(9.6± 3.3± 2.3)× 10−10

0.6 % accuracy on total HVP!
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Dispersion relation and optical theorem relate τ decay rate to the (H)VP

ρexp(s)

0 1 2 3 4
s [GeV2]

1e-05

0.0001

0.001

0.01

0.1

1
Belle K-

π
0, K0

π
- (Adematz)

Belle K0
π

-
π

0

BaBar K-
π

+
π

-

ALEPH K-2π,Κ(3−5)π,Kη
pQCD, D=0 OPE (nf=3)

N∑

k=1

Res(ω(−Q2
k ))Πlat(−Q2

k ) = |Vus |−2ρexp +

∫ ∞

m2
τ

ds ω(s)ΠpQCD(s)

(arbitrary) ω(s) =
1

(s + Q2
1 )(s + Q2

2 ) · · · (s + Q2
N)
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Preliminary results (T. Izubuchi and H. Ohki)

N = 4 poles centered at C (GeV2), spaced by 0.1 GeV2
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C [GeV2]
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Kl3 decays, PDG 2013

Kl2 decays, PDG 2013

CKM unitarity, PDG 2013

τ -> s inclusive, HFAG 2014

τ -> Kν / τ -> π ν, HFAG 2014

τ -> Kν, HFAG 2014

τ  average, HFAG 2014

N = 3 , C = 0.3

N = 3 , C = 1.00

N = 4 , C = 1.05

Vus puzzle: inclusive / exclusive differ by about 3 σ
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Questions from the SPC

1 What are the expected uncertainties in Vus from the tau
decay analysis?

Ans: current error is roughly 0.9%,
expect to get ∼ 0.5% total error

2 Can any estimate be made of the disconnected contributions
that are not part of your calculations?

Ans: All disconnected contributions accounted for
in [Blum et al., 2015], no disc. contributions in Vus analysis

3 Are you ready to use the new JLab resource? Ans: yes
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Summary

The muon anomalous magnetic moment provides a stringent
test of the SM: ∼ 3 standard deviation difference at the level
of 0.5 ppm

Physical mass, large box, ensembles + improved algorithms
powerful

Lattice QCD calculations will reduce and solidify current
theory errors in time for

Upcoming E989 measurement at Fermilab (goal 0.14 ppm)

New analysis of Vus with non-PT lattice input to reduce
pQCD errors, solve Vus puzzle
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