SPC: B physics session

Aida X. EI-Khadra (University of Illinois)

USQCD All Hands meeting, BNL, 29-30 April 2016

Outline

9 Motivation

- Proposal overview
- Summary of recent progress in B physics program
is summary
is semileptonic decays
mixing
¿ CKM, BSM phenomenology
- To do list

Motivation

example: $B \rightarrow \pi \ell \nu$

generic EW process involving hadrons:
(experiment) $=($ known $) \times($ CKM element $) \times$ (had. matrix element $)$

Lattice QCD

parameterize the ME in terms of form factors, decay constants, bag parameters, ...

B physics proposal overview

9 FNAL/MILC:
~ 5.7M BG/Q + 90.9M Jpsi cluster CPU; storage: 70 TB disk + 78 TB tape
\approx broad B and B_{s} physics program
\sim semileptonic D decays
~ quark masses + strong coupling

- $\mathrm{RBC} / \mathrm{UKQCD}^{2}$
¿ 19.8 M Jpsi CPU; storage: 50.5 TB disk + 300 TB tape
$\approx B_{(s)} \rightarrow D_{(s)}^{(*)} \ell \nu,\left|V_{c b}\right|$ and $R\left(D^{(*)}\right)$
- LANL-SNU:
¿ 36 M Jpsi CPU; storage: 25 TB disk + 300 TB tape
~ $B \rightarrow D^{(*)} \ell \nu$ and $\left|V_{c b}\right|$
+ RBC (Kelly on $K \rightarrow \pi \pi$) and Leskovec (on $\mathrm{B} \rightarrow K \pi \ell \ell)$

Summary of recent progress

errors (in \%) (preliminary) FLAG-3 averages + new results

Semileptonic decays

form factors for $B \rightarrow D \ell \nu$ at nonzero recoil by FNAL/MILC (Bailey et al,arXiv:1503.07237, PRD 2015) HPQCD (Na et al,arXiv:1505.03925, PRD 2015)

Summary of recent progress

errors (in \%) (preliminary) FLAG-3 averages + new results

Semileptonic decays

form factors for $B \rightarrow D \ell \nu$ at nonzero recoil by FNAL/MILC (Bailey et al,arXiv:1503.07237, PRD 2015) HPQCD (Na et al,arXiv:1505.03925, PRD 2015)

$$
\begin{aligned}
& B \rightarrow \pi \ell \nu, B_{s} \rightarrow K \ell \nu, B \rightarrow \pi \ell \ell, B \rightarrow K \ell \ell \\
& \text { RBC/UKQCD (Flynn et al, arXiv:1501.05373, PRD 2015) } \\
& \text {-FNAL/MILC (Bailey et al, arXiv:1503.07839, PRD 2015; } \\
& \text { arXiv:1507.01618, 2015 PRL; 1509.06235, PRD 2015; } \\
& \text { Du et al, arXiv:1509.06235, PRD 2015) }
\end{aligned}
$$

Summary of recent progress

errors (in \%) (preliminary) FLAG-3 averages + new results

Semileptonic decays

form factors for $B \rightarrow D \ell \nu$ at nonzero recoil by FNAL/MILC (Bailey et al,arXiv:1503.07237, PRD 2015) HPQCD (Na et al,arXiv:1505.03925, PRD 2015)

$$
\begin{aligned}
& B \rightarrow \pi \ell \nu, B_{s} \rightarrow K \ell \nu, B \rightarrow \pi \ell \ell, B \rightarrow K \ell \ell, \\
& \text { RBC/UKQCD (Flynn et al, arXiv:1501.05373, PRD 2015) } \\
& \text { FNAL/MILC (Bailey et al, arXiv:1503.07839, PRD 2015; }
\end{aligned}
$$

$$
\text { arXiv:1507.01618, } 2015 \text { PRL; 1509.06235, PRD 2015; }
$$

Du et al, arXiv:1509.06235, PRD 2015)

$$
\begin{aligned}
& \Lambda_{b} \rightarrow p / \Lambda_{b} \rightarrow \Lambda_{c} \text { and } \Lambda_{b} \rightarrow \Lambda \ell \ell \\
& \text { (Detmold et al, arXiv:1503.01421, PRD 2015; } \\
& \text { arXiv:1602.01399, PRD 2016) }
\end{aligned}
$$

Summary of recent progress

errors (in \%) (preliminary) FLAG-3 averages + new results

Semileptonic decays

form factors for $B \rightarrow D \ell \nu$ at nonzero recoil by FNAL/MILC (Bailey et al,arXiv:1503.07237, PRD 2015) HPQCD (Na et al,arXiv:1505.03925, PRD 2015)

$$
B \rightarrow \pi \ell \nu, B_{s} \rightarrow K \ell \nu, B \rightarrow \pi \ell \ell, B \rightarrow K \ell \ell
$$ RBC/UKQCD (Flynn et al, arXiv:1501.05373, PRD 2015) FNAL/MILC (Bailey et al, arXiv:1503.07839, PRD 2015; arXiv:1507.01618, 2015 PRL; 1509.06235, PRD 2015; Du et al, arXiv:1509.06235, PRD 2015)

$$
\begin{aligned}
& { }_{\text {(Detmold et al, arXiv:1503.01421, PRD 2015; }}^{\Lambda_{b} \rightarrow p / \Lambda_{b} \rightarrow \Lambda_{c} \text { and } \Lambda_{b} \rightarrow \Lambda \ell \ell} \text { arXiv:1602.01399, PRD 2016) }
\end{aligned}
$$

Theory uncertainties are commensurate with experimental errors

Summary of recent progress

errors (in \%) (preliminary) FLAG-3 averages + new results

$f_{B_{s}} / f_{B}$

$f_{B_{s}}$

f_{B}

$\mathcal{F}^{B \rightarrow D^{*}}(1)$ \square
$\mathcal{G}^{B \rightarrow D}(1)$
$R(D)$
$f_{+}^{B \rightarrow \pi}\left(q^{2}\right)$

B meson mixing
First calculation of all five MEs with $n_{f}=3$ by FNAL/MILC (Bazavov et al,arXiv:1602.03560)

Quark flavor experiments

Quark flavor experiments

Exclusive vs. inclusive $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$

UT analysis

Laiho, Lunghi \& Van de Water (Phys.Rev.D81:034503,2010), E. Lunghi, private comm.

UT analysis

Laiho. Lunghi \& Van de Water (Phvs.Rev.D81:034503.2010). E. Lunghi. private comm.

UT analysis

Laiho, Lunghi \& Van de Water (Phys.Rev.D81:034503,2010), E. Lunghi, private comm.

The ratio $R\left(D^{(*)}\right)$

$$
R\left(D^{(*)}\right)=\frac{\mathcal{B}\left(B \rightarrow D^{(*)} \tau \nu_{\tau}\right)}{\mathcal{B}\left(B \rightarrow D^{(*)} \ell \nu\right)}
$$

HFAG average for EPS 2015

B Mixing and FCNC decays

$\sim 2 \sigma$ tensions between loop processes and CKM unitarity.

To do list

- $B \rightarrow D^{*}$ form factors at nonzero recoil
~ $\left|V_{c b}\right|$ determination, check consistency with $B \rightarrow D$ det.
\sim SM prediction of $R\left(D^{*}\right)$
~ $\left|V_{c b}\right|$ also important for ϵ_{K} and rare K decay
Q theory errors in $B_{(s)}$ mixing matrix elements still larger than experiment.
- keep up with anticipated experimental improvements

Q expand B physics calculations to non-simple quantities
nut Leskovec talk

Backup slides

Kaon summary

S. Aoki et al (FLAG-2 review, arXiv:1310.8555, FLAG-3 update)

courtesy of S. Simula (FLAG-3, Vus working group)

status as of mid 2015

Kaon summary: $K_{l 3}$ example

RBC/UKQCD (1504.01692, JHEP 2015)

data at the physical point (offset horizontally)

Kaon summary

For all quantities there are results that use physical mass ensembles errors (in \%) preliminary FLAG-3 averages

Semileptonic B-meson decay at nonzero recoil

Example: $B \rightarrow \pi \ell \nu$

$$
\left.\frac{d \Gamma(B \rightarrow \pi \ell \nu)}{d q^{2}}=(\text { known }) \times\left|V_{u b}\right|^{2}\right) \times\left|f_{+}\left(q^{2}\right)\right|^{2}
$$

\star shape for semileptonic B decays: use z-expansion for model-independent parameterization of q^{2} dependence (see back-up slide)

The z-expansion

The form factor can be expanded as:

$$
f(t)=\frac{1}{P(t) \phi\left(t, t_{0}\right)} \sum_{k=0} a_{k}\left(t_{0}\right) z\left(t, t_{0}\right)^{k}
$$

Bourrely at al (Nucl.Phys. B189 (1981) 157) Boyd et al (hep-ph/9412324,PRL 95) Lellouch (arXiv:hep- ph/9509358, NPB 96) Boyd \& Savage (hep-ph/9702300, PRD 97) Bourrely at al (arXiv:0807.2722, PRD 09)

- $P(t)$ removes poles in [$\left.t_{-}, t_{+}\right]$
- The choice of outer function ϕ affects the unitarity bound on the a_{k}.
- In practice, only first few terms in expansion are needed.

Form factors for $B \rightarrow D^{(*)} \ell \nu \& V_{c b}$

- combined fit to LQCD form factors + BaBar data.
- LQCD form factor errors ($\sim 1.2 \%$) smaller than experiment.

Form factors for $B \rightarrow D^{(*)} \ell \nu \& V_{c b}$

P. Gambino, global fit (Belle + BaBar + HPQCD + FNAL/MILC) @ EPS 2015:

$$
\left|V_{c b}\right|=41.09(95) 10^{-3}
$$

Form factor for $B \rightarrow \pi \ell \nu \& V_{u b}$

New: First determination of $\left|\mathrm{V}_{\mathrm{ub}} / \mathrm{V}_{\mathrm{cb}}\right|$ from baryon decay!
(Detmold et al, arXiv:1503.01421, PRD 2015) + LHCb (arXiv:1504.01568, Nature 2015)

$$
R_{F F}=\frac{\left|V_{c b}\right|^{2}}{\left|V_{u b}\right|^{2}} \frac{\int_{15 \mathrm{GeV}^{2}}^{q_{\max }^{2}} \frac{d \Gamma\left(\Lambda_{b} \rightarrow p \mu \nu\right)}{d q^{2}} d q^{2}}{\int_{7 \mathrm{GeV}^{2}}^{q_{\max }^{2}} \frac{d \Gamma\left(\Lambda_{b} \rightarrow \Lambda_{c} \mu \nu\right)}{d q^{2}} d q^{2}}=1.471 \pm 0.094 \pm 0.109
$$

Form factors for $B \rightarrow K, \pi \ell^{+} \ell^{-}$

$$
\mathcal{H}_{\mathrm{eff}}=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i}\left(C_{i} O_{i}+C_{i}^{\prime} O_{i}^{\prime}\right)
$$

Need 3 form factors: $f_{+, 0, T}\left(q^{2}\right)$

- low recoil (high q^{2}) OPE
- high recoil (low q^{2}) SCET
- compare theory with exp.

HPQCD for $B \rightarrow K$
(arXiv:1306.0434, 1306.2384, PRL 2013)
FNAL/MILC for $B \rightarrow K, B \rightarrow \pi$
(arXiv:1509.06235, 1507.01618, PRL 2015)

Phenomenology for $B \rightarrow K, \pi \ell^{+} \ell^{-}$

Experiment vs. Theory

Phenomenology for $B \rightarrow K, \pi \ell^{+} \ell^{-}$

Experiment vs. Theory

Phenomenology for $B \rightarrow K, \pi \ell^{+} \ell^{-}$

Experiment vs. theory

- LHCb data + FNAL/MILC form factors (arXiv:1509.00414,1403.8044, JHEP 2014)
- focus on large bins above and below charmonium resonances
- theory error commensurate with experiment
- yields $\sim 1-2 \sigma$ tensions
- \Rightarrow determine $\left|V_{t d} / V_{t s},\left|V_{t d}\right|,\left|V_{t s}\right|\right.$ or constrain Wilson coefficients

