# Non-Gaussian cumulants of conserved charge fluctuations 

Sayantan Sharma

## BRDOKHENEN <br> NATIONAL LABORATORY

Project Members: Frithjof Karsch, Swagato Mukherjee, Hiroshi Ohno, Peter Petreczky and Patrick Steinbrecher

USQCD All Hands Meeting 2016.

## Outline

(1) Goals of our project
(2) Recent developments
(3) New Results and Outlook

## Outline

## (1) Goals of our project

## (2) Recent developments

## 3 New Results and Outlook

## QCD Phase Diagram: Status



- QCD phase diagram largely unexplored inspite of intense efforts in last decades. $\rightarrow$ major focus of the Beam Energy Scan phase II experiments planned at the Relativistic Heavy Ion Collider at BNL.


## QCD Phase Diagram: Status



- QCD phase diagram largely unexplored inspite of intense efforts in last decades. $\rightarrow$ major focus of the Beam Energy Scan phase II experiments planned at the Relativistic Heavy Ion Collider at BNL.
- Themes: Existence of critical end-point, hydrodynamic modeling of the QCD medium formed in the experiments to understand experimental results.


## Goals of our project



- Lattice studies have given an Equation of state in QCD at $\mu_{B}=0$ in the continuum limit. [HotQCD and Budapest-Wuppertal Collaboration]
- $T \sim 140 \mathrm{MeV}$, QCD can be described as Hadron Resonance Gas model but near chiral crossover $T_{c} \sim 154 \mathrm{MeV}$, HRG picture breaks down.


## Goals of our project



- Lattice studies have given an Equation of state in QCD at $\mu_{B}=0$ in the continuum limit. [HotQCD and Budapest-Wuppertal Collaboration]
- $T \sim 140 \mathrm{MeV}, \mathrm{QCD}$ can be described as Hadron Resonance Gas model but near chiral crossover $T_{c} \sim 154 \mathrm{MeV}$, HRG picture breaks down.
- What happens to the HRG picture at finite density like the QCD medium formed in the experiments?


## Goals of our project



- Lattice studies have given an Equation of state in QCD at $\mu_{B}=0$ in the continuum limit. [HotQCD and Budapest-Wuppertal Collaboration]
- $T \sim 140 \mathrm{MeV}, \mathrm{QCD}$ can be described as Hadron Resonance Gas model but near chiral crossover $T_{c} \sim 154 \mathrm{MeV}$, HRG picture breaks down.
- What happens to the HRG picture at finite density like the QCD medium formed in the experiments?
- Can we bracket the position of the critical end-point in QCD phase diagram?


## Goals of our project



- Lattice studies have given an Equation of state in QCD at $\mu_{B}=0$ in the continuum limit. [HotQCD and Budapest-Wuppertal Collaboration]
- $T \sim 140 \mathrm{MeV}$, QCD can be described as Hadron Resonance Gas model but near chiral crossover $T_{c} \sim 154 \mathrm{MeV}$, HRG picture breaks down.
- What happens to the HRG picture at finite density like the QCD medium formed in the experiments?
- Can we bracket the position of the critical end-point in QCD phase diagram?
- Can we understand the critical behaviour due to the light quarks in the crossover region?


## Critical point: status

- One of the methods to circumvent sign problem at finite $\mu$ : Taylor expansion of physical observables around $\mu=0$ in powers of $\mu / T$.


## Critical point: status

- One of the methods to circumvent sign problem at finite $\mu$ : Taylor expansion of physical observables around $\mu=0$ in powers of $\mu / T$.
- The baryon no. susceptibility:

$$
\chi_{2}^{B}\left(\mu_{B}\right) / T^{2}=\chi_{2}^{B}(0) / T^{2}+\frac{1}{2}\left(\frac{\mu_{B}}{T}\right)^{2} \chi_{4}^{B}(0)+\frac{1}{4!}\left(\frac{\mu_{B}}{T}\right)^{4} \chi_{6}^{B}(0)+\ldots
$$

## Critical point: status

- One of the methods to circumvent sign problem at finite $\mu$ : Taylor expansion of physical observables around $\mu=0$ in powers of $\mu / T$.
- The baryon no. susceptibility:

$$
\chi_{2}^{B}\left(\mu_{B}\right) / T^{2}=\chi_{2}^{B}(0) / T^{2}+\frac{1}{2}\left(\frac{\mu_{B}}{T}\right)^{2} \chi_{4}^{B}(0)+\frac{1}{4!}\left(\frac{\mu_{B}}{T}\right)^{4} \chi_{6}^{B}(0)+\ldots
$$

- Series should diverge at the critical point. On finite lattice $\chi_{2}^{B}$ peaks, ratios of Taylor coefficients equal, indep. of volume [Gavai\& Gupta, 03]


## Critical point: status

- One of the methods to circumvent sign problem at finite $\mu$ : Taylor expansion of physical observables around $\mu=0$ in powers of $\mu / T$.
- The baryon no. susceptibility:
$\chi_{2}^{B}\left(\mu_{B}\right) / T^{2}=\chi_{2}^{B}(0) / T^{2}+\frac{1}{2}\left(\frac{\mu_{B}}{T}\right)^{2} \chi_{4}^{B}(0)+\frac{1}{4!}\left(\frac{\mu_{B}}{T}\right)^{4} \chi_{6}^{B}(0)+\ldots$
- Series should diverge at the critical point. On finite lattice $\chi_{2}^{B}$ peaks, ratios of Taylor coefficients equal, indep. of volume [Gavai\& Gupta, 03]
- Current status:
$\chi_{8}^{B}$ for $N_{\tau}=8$ pure staggered fermions [Gavi\& Gupta, 08].
$\chi_{6}^{B}$ for $N_{\tau}=6,8,12,16$ HISQ fermions
[BNL-Bielefeld-CCNU Collaboration, HotQCD Collaboration, 16].


## Critical point: status

- One of the methods to circumvent sign problem at finite $\mu$ : Taylor expansion of physical observables around $\mu=0$ in powers of $\mu / T$.
- The baryon no. susceptibility:
$\chi_{2}^{B}\left(\mu_{B}\right) / T^{2}=\chi_{2}^{B}(0) / T^{2}+\frac{1}{2}\left(\frac{\mu_{B}}{T}\right)^{2} \chi_{4}^{B}(0)+\frac{1}{4!}\left(\frac{\mu_{B}}{T}\right)^{4} \chi_{6}^{B}(0)+\ldots$
- Series should diverge at the critical point. On finite lattice $\chi_{2}^{B}$ peaks, ratios of Taylor coefficients equal, indep. of volume [Gavai\& Gupta, 03]
- Current status:
$\chi_{8}^{B}$ for $N_{\tau}=8$ pure staggered fermions [Gavi\& Gupta, 08].
$\chi_{6}^{B}$ for $N_{\tau}=6,8,12,16$ HISQ fermions
[BNL-Bielefeld-CCNU Collaboration, HotQCD Collaboration, 16].
- $\chi_{6}^{B}$ can already constrain QCD pressure in the regime approximated by Hadron Resonance gas model.


## Challenges

- The Baryon no. susceptibilities can be expressed in terms of Quark no. susceptibilities (QNS).


## Challenges

- The Baryon no. susceptibilities can be expressed in terms of Quark no. susceptibilities (QNS).
- QNS $\chi_{i j}$ 's can be written as derivatives of the Dirac operator. Example : $\chi_{2}^{u}=\frac{T}{V}\left\langle\operatorname{Tr}\left(D_{u}^{-1} D_{u}^{\prime \prime}-\left(D_{u}^{-1} D_{u}^{\prime}\right)^{2}\right)+\left(\operatorname{Tr}\left(D_{u}^{-1} D_{u}^{\prime}\right)\right)^{2}\right\rangle$. $\chi_{11}^{\mu s}=\frac{T}{V}\left\langle\operatorname{Tr}\left(D_{u}^{-1} D_{u}^{\prime} D_{s}^{-1} D_{s}^{\prime}\right)\right\rangle$.


## Challenges

- The Baryon no. susceptibilities can be expressed in terms of Quark no. susceptibilities (QNS).
- QNS $\chi_{i j}$ 's can be written as derivatives of the Dirac operator. Example : $\chi_{2}^{u}=\frac{T}{V}\left\langle\operatorname{Tr}\left(D_{u}^{-1} D_{u}^{\prime \prime}-\left(D_{u}^{-1} D_{u}^{\prime}\right)^{2}\right)+\left(\operatorname{Tr}\left(D_{u}^{-1} D_{u}^{\prime}\right)\right)^{2}\right\rangle$. $\chi_{11}^{\mu s}=\frac{T}{V}\left\langle\operatorname{Tr}\left(D_{u}^{-1} D_{u}^{\prime} D_{s}^{-1} D_{s}^{\prime}\right)\right\rangle$.
- Inversions performed on Gaussian noise vectors


## Challenges

- The Baryon no. susceptibilities can be expressed in terms of Quark no. susceptibilities (QNS).
- QNS $\chi_{i j}$ 's can be written as derivatives of the Dirac operator. Example : $\chi_{2}^{u}=\frac{T}{V}\left\langle\operatorname{Tr}\left(D_{u}^{-1} D_{u}^{\prime \prime}-\left(D_{u}^{-1} D_{u}^{\prime}\right)^{2}\right)+\left(\operatorname{Tr}\left(D_{u}^{-1} D_{u}^{\prime}\right)\right)^{2}\right\rangle$. $\chi_{11}^{\mu s}=\frac{T}{V}\left\langle\operatorname{Tr}\left(D_{u}^{-1} D_{u}^{\prime} D_{s}^{-1} D_{s}^{\prime}\right)\right\rangle$.
- Inversions performed on Gaussian noise vectors
- Higher derivatives $\rightarrow$ more inversions Inversion is the most expensive step on the lattice!


## Challenges

- The Baryon no. susceptibilities can be expressed in terms of Quark no. susceptibilities (QNS).
- QNS $\chi_{i j}$ 's can be written as derivatives of the Dirac operator. Example : $\chi_{2}^{u}=\frac{T}{V}\left\langle\operatorname{Tr}\left(D_{u}^{-1} D_{u}^{\prime \prime}-\left(D_{u}^{-1} D_{u}^{\prime}\right)^{2}\right)+\left(\operatorname{Tr}\left(D_{u}^{-1} D_{u}^{\prime}\right)\right)^{2}\right\rangle$. $\chi_{11}^{\mu s}=\frac{T}{V}\left\langle\operatorname{Tr}\left(D_{u}^{-1} D_{u}^{\prime} D_{s}^{-1} D_{s}^{\prime}\right)\right\rangle$.
- Inversions performed on Gaussian noise vectors
- Higher derivatives $\rightarrow$ more inversions Inversion is the most expensive step on the lattice!
- Extending to higher orders?


## Challenges

- The Baryon no. susceptibilities can be expressed in terms of Quark no. susceptibilities (QNS).
- QNS $\chi_{i j}$ 's can be written as derivatives of the Dirac operator. Example : $\chi_{2}^{u}=\frac{T}{V}\left\langle\operatorname{Tr}\left(D_{u}^{-1} D_{u}^{\prime \prime}-\left(D_{u}^{-1} D_{u}^{\prime}\right)^{2}\right)+\left(\operatorname{Tr}\left(D_{u}^{-1} D_{u}^{\prime}\right)\right)^{2}\right\rangle$. $\chi_{11}^{\mu s}=\frac{T}{V}\left\langle\operatorname{Tr}\left(D_{u}^{-1} D_{u}^{\prime} D_{s}^{-1} D_{s}^{\prime}\right)\right\rangle$.
- Inversions performed on Gaussian noise vectors
- Higher derivatives $\rightarrow$ more inversions Inversion is the most expensive step on the lattice!
- Extending to higher orders?
(1) Matrix inversions increasing with the order


## Challenges

- The Baryon no. susceptibilities can be expressed in terms of Quark no. susceptibilities (QNS).
- QNS $\chi_{i j}$ 's can be written as derivatives of the Dirac operator. Example : $\chi_{2}^{u}=\frac{T}{V}\left\langle\operatorname{Tr}\left(D_{u}^{-1} D_{u}^{\prime \prime}-\left(D_{u}^{-1} D_{u}^{\prime}\right)^{2}\right)+\left(\operatorname{Tr}\left(D_{u}^{-1} D_{u}^{\prime}\right)\right)^{2}\right\rangle$. $\chi_{11}^{U S}=\frac{T}{V}\left\langle\operatorname{Tr}\left(D_{u}^{-1} D_{u}^{\prime} D_{s}^{-1} D_{s}^{\prime}\right)\right\rangle$.
- Inversions performed on Gaussian noise vectors
- Higher derivatives $\rightarrow$ more inversions Inversion is the most expensive step on the lattice!
- Extending to higher orders?
(1) Matrix inversions increasing with the order
(2) Delicate cancellation between a large number of terms for higher order QNS.


## Outline

## (1) Goals of our project

## (2) Recent developments

## 3 New Results and Outlook

## A new method to introduce $\mu$

- The staggered fermion matrix used at finite $\mu$ [Hasenfratz, Karsch, 83]

$$
\begin{aligned}
D(\mu)_{x y} & =\sum_{i=1}^{3} \eta_{i}(x)\left[U_{i}^{\dagger}(y) \delta_{x, y+\hat{i}}-U_{i}(x) \delta_{x, y-\hat{i}}\right] \\
& +\eta_{4}(x)\left[\mathrm{e}^{\mu \mathrm{a}} U_{4}^{\dagger}(y) \delta_{x, y+\hat{4}}-\mathrm{e}^{-\mu \mathrm{a}} U_{4}(x) \delta_{x, y-\hat{4}}\right]
\end{aligned}
$$

## A new method to introduce $\mu$

- The staggered fermion matrix used at finite $\mu$ [Hasenfratz, Karsch, 83]

$$
\begin{aligned}
D(\mu)_{x y} & =\sum_{i=1}^{3} \eta_{i}(x)\left[U_{i}^{\dagger}(y) \delta_{x, y+\hat{i}}-U_{i}(x) \delta_{x, y-\hat{i}}\right] \\
& +\eta_{4}(x)\left[\mathrm{e}^{\mu \mathrm{a}} U_{4}^{\dagger}(y) \delta_{x, y+\hat{4}}-\mathrm{e}^{-\mu a} U_{4}(x) \delta_{x, y-\hat{4}}\right]
\end{aligned}
$$

- One can also add $\mu$ coupled to the conserved number density as in the continuum.

$$
D(0)_{x y}-\frac{\mu a}{2} \eta_{4}(x)\left[U_{4}^{\dagger}(y) \delta_{x, y+\hat{4}}+U_{4}(x) \delta_{x, y-\hat{4}}\right] .
$$

## Pros and Cons

- Linear method: $D^{\prime}=\sum_{x, y} N(x, y)$, and

$$
D^{\prime \prime}=D^{\prime \prime \prime}=D^{\prime \prime \prime \prime \prime} \ldots=0
$$

in contrast to the Exp-prescription, all derivatives are non-zero.

## Pros and Cons

- Linear method: $D^{\prime}=\sum_{x, y} N(x, y)$, and

$$
D^{\prime \prime}=D^{\prime \prime \prime}=D^{\prime \prime \prime \prime} \ldots=0
$$

in contrast to the Exp-prescription, all derivatives are non-zero.

- No. of inversions significantly reduced for higher orders in linear method.
For 8th order QNS the no. of matrix inversions reduced from 20 to 8.
[Gavai \& Sharma, 12]


## Pros and Cons

- Linear method: $D^{\prime}=\sum_{x, y} N(x, y)$, and $D^{\prime \prime}=D^{\prime \prime \prime}=D^{\prime \prime \prime \prime} \ldots=0$
in contrast to the Exp-prescription, all derivatives are non-zero.
- No. of inversions significantly reduced for higher orders in linear method.
For 8th order QNS the no. of matrix inversions reduced from 20 to 8.
[Gavai \& Sharma, 12]
- Linear method: $\chi_{n}$ have additional zero- $T$ artifacts. $\rightarrow$ explicit counter terms needed for $\chi_{2,4}$, discussed in detail [Gava \& Sharma, 15]


## Pros and Cons

- Linear method: $D^{\prime}=\sum_{x, y} N(x, y)$, and $D^{\prime \prime}=D^{\prime \prime \prime}=D^{\prime \prime \prime \prime} \ldots=0$
in contrast to the Exp-prescription, all derivatives are non-zero.
- No. of inversions significantly reduced for higher orders in linear method.
For 8th order QNS the no. of matrix inversions reduced from 20 to 8.
[Gavai \& Sharma, 12]
- Linear method: $\chi_{n}$ have additional zero- $T$ artifacts. $\rightarrow$ explicit counter terms needed for $\chi_{2,4}$, discussed in detail [Gava \& Sharma, 15]
- In Exp method: counter terms already at the Lagrangian level. We use this method for $\chi_{n}^{B}, n=2,4$.


## Nature of the divergences for higher order susceptibilities

- For any order $n$, the artifacts $\sim \mathcal{O}\left(a^{n-4}\right)$.


## Nature of the divergences for higher order susceptibilities

- For any order $n$, the artifacts $\sim \mathcal{O}\left(a^{n-4}\right)$.
- $n \geq 6$ these artifacts do not affect the continuum extrapolation.


## Nature of the divergences for higher order susceptibilities

- For any order $n$, the artifacts $\sim \mathcal{O}\left(a^{n-4}\right)$.
- $n \geq 6$ these artifacts do not affect the continuum extrapolation.
- Explicitly checked in free theory as well as for QCD with HISQ fermions with nearly physical pion mass.


## Nature of the divergences for higher order susceptibilities

- For any order $n$, the artifacts $\sim \mathcal{O}\left(a^{n-4}\right)$.
- $n \geq 6$ these artifacts do not affect the continuum extrapolation.
- Explicitly checked in free theory as well as for QCD with HISQ fermions with nearly physical pion mass.




## Speeding up the inversions with deflation

- Calculating explicitly the lowest eigenvalues improves performance of the fermion inverter

$$
D^{-1}|R\rangle=\sum_{i=1}^{N} 1 / \lambda_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i} \mid R\right\rangle+\text { CG Inversion. }
$$

- We have developed highly optimized codes based on Ritz and Lanczos algorithms for CPU's and GPU respectively.
- Current volumes $N_{s}=4 N_{\tau}$, already approaches a plateau for $N=80$ for $T \sim 145 \mathrm{MeV}$. Typical $N=192-256$.



## Performance of our codes

- We group random vectors for a single gauge configuration $\rightarrow$ use of Multiple right hand sides for Conjugate Gradient Inversion increases arithmetic intensity. [0. Kaczmarek, C. Schmidt, P. Steinbrecher, M. Wagner, 14]


## Performance of our codes

- We group random vectors for a single gauge configuration $\rightarrow$ use of Multiple right hand sides for Conjugate Gradient Inversion increases arithmetic intensity. [O. Kaczmarek, C. Schmidt, P. Steinbrecher, M. Wagner, 14]
- Currently highly optimized codes for Intel Knights Corner extended to Knights Landing. [Maily led by Patrick Steinbrecher, graduate student since 15]



## Outline

## (1) Goals of our project

(2) Recent developments
(3) New Results and Outlook

## New data analyzed 2015-16

|  | $32^{3} \times 8$ |  | $24^{3} \times 6$ |  |
| :---: | :---: | :---: | :---: | :---: |
| $T[\mathrm{MeV}]$ | $\beta$ | $\#$ analyzed | $\beta$ | $\#$ analyzed |
| 135 | 6.245 | 104420 | 5.980 | 68000 |
| 140 | 6.285 | 104480 | 6.015 | 120790 |
| 145 | 6.315 | 107480 | 6.045 | 120770 |
| 150 | 6.354 | 108030 | 6.080 | 30080 |
| 155 | 6.390 | 108580 | 6.120 | 23546 |
| 160 | 6.423 | 119290 | 6.150 | 31164 |
| 165 | 6.445 | 122340 | 6.170 | 20000 |
| 170 | 6.474 | 141780 | 6.200 | 138470 |
| 175 | 6.500 | 142960 | 6.225 | 125280 |

- Results with physical quark mass


## New data analyzed 2015-16

|  | $32^{3} \times 8$ |  | $24^{3} \times 6$ |  |
| :---: | :---: | :---: | :---: | :---: |
| $T[\mathrm{MeV}]$ | $\beta$ | $\#$ analyzed | $\beta$ | $\#$ analyzed |
| 135 | 6.245 | 104420 | 5.980 | 68000 |
| 140 | 6.285 | 104480 | 6.015 | 120790 |
| 145 | 6.315 | 107480 | 6.045 | 120770 |
| 150 | 6.354 | 108030 | 6.080 | 30080 |
| 155 | 6.390 | 108580 | 6.120 | 23546 |
| 160 | 6.423 | 119290 | 6.150 | 31164 |
| 165 | 6.445 | 122340 | 6.170 | 20000 |
| 170 | 6.474 | 141780 | 6.200 | 138470 |
| 175 | 6.500 | 142960 | 6.225 | 125280 |

- Results with physical quark mass
- Deflation + Multiple Right hand side technique+ special care of noisy operators $\rightarrow$ a speedup of 30 allowed for analysis of extensive set of configurations.


## Main Outcome : Sixth order cumulants

- $\chi_{6}^{u}$ signal improved with the statistics $N$. We observe the negative dip just above $T_{c} \rightarrow$ signal of $O(4)$ criticality?



## Main Outcome : Sixth order cumulants

- Improvement visible already in $\chi_{6}^{B}$ at the lowest temperatures by increasing number of configurations,
- We aim to increase statistics needed to reduce errors by a factor two.



## Constraining EoS

- In a regime where Hadron Resonance gas is anticipated to be a good description of QCD, including $\chi_{6}^{B}$ term already reproduces $P\left(\mu_{B}\right)$ within 5\% accuracy.


## Constraining EoS

- In a regime where Hadron Resonance gas is anticipated to be a good description of QCD, including $\chi_{6}^{B}$ term already reproduces $P\left(\mu_{B}\right)$ within 5\% accuracy.
- Improve errors on our current data to observe this
$\rightarrow$ increase statistics twofold this year.




## Breakdown of HRG

- Breakdown of HRG+ onset of criticality can be already constrained with $\chi_{6}^{B}$.


## Breakdown of HRG

- Breakdown of HRG+ onset of criticality can be already constrained with $\chi_{6}^{B}$.
- Near critical point all terms in the Taylor expansion nearly equal $\rightarrow$ need to improve the errors!


## Breakdown of HRG

- Breakdown of HRG+ onset of criticality can be already constrained with $\chi_{6}^{B}$.
- Near critical point all terms in the Taylor expansion nearly equal $\rightarrow$ need to improve the errors!
- Our data gives a preliminary bound on the location of critical point from radius of convergence estimates, $r_{2 n} \equiv \sqrt{2 n(2 n-1)\left|\frac{\chi_{n}^{B}}{\chi_{2 n+2}^{B}}\right|}$.




## EoS away from criticality

- The pressure for $T>160 \mathrm{MeV}$ which is an important input for the hydrodynamic modeling of the plasma already constrained by $\chi_{B}^{6}$ even for highest $\mu_{B} / T$.




## Outlook



- In view of the RHIC Beam Energy Scan-II runs in 2019-20 it is important to have control over the Equation of State for $T \sim 145-160 \mathrm{MeV}$.


## Outlook



- In view of the RHIC Beam Energy Scan-II runs in 2019-20 it is important to have control over the Equation of State for $T \sim 145-160 \mathrm{MeV}$.
- Improving statistics on $\chi_{6}^{B}$ in the hadron phase will already improve the EoS.


## Outlook



- In view of the RHIC Beam Energy Scan-II runs in 2019-20 it is important to have control over the Equation of State for $T \sim 145-160 \mathrm{MeV}$.
- Improving statistics on $\chi_{6}^{B}$ in the hadron phase will already improve the EoS.
- Analysis of $\chi_{8}^{B}$ is also crucial to estimate the errors on the EoS measured with the sixth order cumulants.


## Outlook



- In view of the RHIC Beam Energy Scan-II runs in 2019-20 it is important to have control over the Equation of State for $T \sim 145-160 \mathrm{MeV}$.
- Improving statistics on $\chi_{6}^{B}$ in the hadron phase will already improve the EoS.
- Analysis of $\chi_{8}^{B}$ is also crucial to estimate the errors on the EoS measured with the sixth order cumulants.
- Higher order cumulants will also help in bracketing the possible QCD critical end-point which is one of the focus of BES-II experiments.

