

Semi-leptonic B and B_s -decays with charming hadronic final state

Jonathan Flynn, Taku Izubuchi, Andreas Jüttner, Taichi Kawanai, Christoph Lehner, Edwin Lizarazo, Amarjit Soni (PI), Oliver Witzel RBC-UKQCD collaboration

http://rbc.phys.columbia.edu/USQCD/B-physics/

USQCD All-hands Meeting Upton, NY, April 29, 2016

motivatior	1
000	

Motivation: CKM unitarity triangle fit

 $|V_{cb}|$ enters crucially as normalization of the unitarity triangle

$$arepsilon_K \propto |V_{cb}|^4$$

http://utfit.roma1.infn.it, http://ckmfitter.in2p3.fr, http://www.latticeaverages.org

Motivation

- Form factors for $B o D^{(*)} \ell \nu$
 - \rightarrow Allow to determine the CKM matrix-element $|V_{cb}|$
 - $\rightarrow |V_{cb}|$ enters as normalization in the unitary triangle fit
 - $_{\rightarrow}$ 2 3 σ discrepancey between $|\textit{V}_{\textit{cb}}|^{\text{incl}}$ and $|\textit{V}_{\textit{cb}}|^{\text{excl}}$
 - \rightarrow Atlas, CMS, LHCb and Belle II will improve experimental results

► 2 - 3 σ tension in $R_{D^{(*)}}$ ratio — independent of $|V_{cb}|$ [Fajfer et al. PRD 85 (2012) 094025],[J. Bailey et al. PRL 109 (2012) 071802],[BaBar PRL 109 (2012) 101802]

$$R_{D^{(*)}} = \mathcal{B}(B o D^{(*)} au
u_{ au}) / \mathcal{B}(B o D^{(*)} \ell
u_{\ell})$$
, with $\ell = e, \mu$

- → Due to its mass τ is sensitive to both form factors $f_+(q^2)$ and $f_0(q^2)$, $\ell = e, \mu$ are dominated by $f_+(q^2)$
- \rightarrow Anomaly in R_{D^*} is seen by BaBar, LHCb, and Belle
- \rightarrow New physics?

Motivation: $R_{D^{(*)}}$

Figure: [Talk by T. Gershon at MIAPP June 2015]

Our RHQ Project

- Use domain-wall light quarks and nonperturbatively tuned relativistic b-quarks to compute at few-percent precision
 - ► Nonperturbative tuning of RHQ parameters [PRD 86 (2012) 116003]
 - **•** Decay constants f_B and f_{B_s} [PRD 91 (2015) 054502]
 - \blacktriangleright $B \rightarrow \pi \ell \nu$ and $B_s \rightarrow K \ell \nu$ form factors [PRD 91 (2015) 074510]
 - ▶ g_{B*Bπ} coupling constant [PRD 93 (2016) 014510]
 - ▶ $B^0 \overline{B^0}$ mixing
 - ► Rare *B* decays [arXiv:1511.06622]
- f_B , f_{B_s} , and semi-leptonic form factors
 - \triangleright O(a) improvement at 1-loop and mostly nonperturbative renormalization
 - ▶ Correction factors and coefficients computed at 1-loop
- ► B mixing
 - ▶ Tree-level O(a) improvement
 - Perturbative or mostly nonperturbative renormalization

motivation	
000	

- ▶ Re-use DWF point-source light and strange quark propagators
- ▶ Generate Gaussian smeared MDWF charm quark propagators (on the fly)
- ► Create Gaussian smeared-source sequential heavy quark propagators
- ► Compute all possible contractions for pseudoscalar or vector final states ► General building blocks code incl. terms for 1-loop $O(\alpha_{S}a)$ improvement
- ▶ Coefficients to be computed in lattice perturbation theory

2+1 Flavor Domain-Wall Iwasaki ensembles

La	$e^{-1}(\text{GeV})$) am _l	am _s	$M_{\pi}({ m MeV})$	# configs.	#source	S
24	1.785	0.005	0.040	338	1636	1	[PRD 78 (2008) 114509]
24	1.785	0.010	0.040	434	1419	1	[PRD 78 (2008) 114509]
32	2.383	0.004	0.030	301	628	2	[PRD 83 (2011) 074508]
32	2.383	0.006	0.030	362	889	2	[PRD 83 (2011) 074508]
32	2.383	0.008	0.030	411	544	2	[PRD 83 (2011) 074508]
48	1.730	0.00078	0.0362	139	40	81/1*	[PRD 93 (2016) 074505]
64	2.359	0.000678	0.02661	139			[PRD 93 (2016) 074505]
48	~2.7	0.002144	0.02144	~ 250	> 50	24	[in progress]

* All mode averaging: 81 "sloppy" and 1 "exact" solve [Blum et al. PRD 88 (2012) 094503]
 Lattice spacing determined from combined analysis [Blum et al. PRD 93 (2016) 074505]

$$ho$$
 a: \sim 0.11 fm, \sim 0.08 fm, \sim 0.07 fm

Up, down, and strange quarks

- ▶ Domain-wall fermions with same parameters as in the sea-sector (domain-wall hight M₅, extension of 5th dimension L_s)
- Unitary and partially quenched quark masses
- Strange quarks at/near physical the physical value

Charm quarks

- ▶ Möbius DWF optimized for heavy quarks [Boyle et al. JHEP 1604 (2016) 037]
- ▶ $M_5 = 1.6$, $L_s = 12$
- ▶ Discretization errors well under control for $am_c < 0.45$
 - \rightarrow On coarse ($a^{-1}=1.785$ GeV) ensembles we simulate just below $m_c^{\rm phys}$
 - \rightarrow Simulate 3–4 charm-like masses and then <code>extrapolate/interpolate</code>
 - \rightarrow Linear extrapolation is small and benign; interpolation is safe

motivation 000

Charm extrapolation

Figure: [Boyle et al. arXiv:1511.09328]

- ▶ Open triangles: simulated data with mistuned valence strange quark mass
- ▶ Squares: data after correcting valence strange quark
- ▶ Circles: interpolation to reference masses

MDWF charm quarks

Advantages

- \blacktriangleright Very similar setup for computing $B_s
 ightarrow D_s$ as for $B_s
 ightarrow K$
 - \rightarrow Only minor modifications for the perturbative calculations
- ▶ No nonperturbative tuning of the RHQ action for charm quarks
- ▶ Allows to explore new concept of heavy DWF for semileptonic decays
 - \rightarrow Fully nonperturbative renormalization of f_D in progress

Disadvantages

- Larger numerical costs than RHQ charm
- On coarse ensembles small extrapolation needed

Bottom quarks

- Relativistic Heavy Quark action developed by Christ, Li, and Lin [Christ et al. PRD 76 (2007) 074505], [Lin and Christ PRD 76 (2007) 074506]
- Allows to tune the three parameters (m₀a, c_P, ζ) nonperturbatively [PRD 86 (2012) 116003]
- Builds upon Fermilab approach [EI-Khadra et al. PRD 55 (1997) 3933] by tuning all parameters of the clover action non-perturbatively; close relation to the Tsukuba formulation [S. Aoki et al. PTP 109 (2003) 383]
- Heavy quark mass is treated to all orders in $(m_b a)^n$
- Expand in powers of the spatial momentum through $O(\vec{p}a)$
 - Resulting errors will be of $O(\vec{p}^2 a^2)$
 - Allows computation of heavy-light quantities with discretization errors of the same size as in light-light quantities
- Applies for all values of the quark mass
- Has a smooth continuum limit
- ▶ Recently re-tuned to account for updated values of a^{-1}

Proposal 2016/17

- ► Request: 16.0 M Jpsi core hours for computing + 3.8 M Jpsi core hours for storage
- ▶ Aim: compute $B_{(s)} \rightarrow D_{(s)}$ form factors and determine $|V_{cb}|$ as well as $R_{D^{(*)}}$ ratios
- Provide results based on different gauge fields and actions and thus with uncorrelated statistical and different systematic errors to existing results in the literature
- ▶ Explore semileptonic decays with heavy MDWF

Questions from the SPC (shortend)

- 1) Expectations for the precision of your calculation (stat. and sys.)
 - \blacktriangleright We target statistical and systematic errors to be both less than 2%
- 2) Controlling the error of the charm extrapolation and expected size
 - \blacktriangleright The charm extrapolation is small and we expect a sub-percent error
- 3) Plan to use double-ratios like Fermilab/MILC
 - Double ratios roughly double the costs so we did not propose to use them; we are however investigating the advantages and may refine our computational strategy
- 4) Have you considered a multi-mass inverter for DW charm propagators?
 - Multi-mass solvers do not exist for DWF
- 5) Have you considered performing a blind analysis?
- ▶ Yes, we look into adding a blinding factor to our PT computed factors
 6) Can you run on the new Jlab machine, if a) cpu, b) GPU, c) KNL?
 - ▶ Sorry, transferring 200 TB will neither make the site managers nor us happy

motivatio	D
000	

Resources and Acknowledgements

Simulations on 24³, 32³, and the 48³ ensemble with physical pions USQCD: kaon, J/psi, Ds, Bc, and pi0 cluster at Fermilab BNL and Columbia U: small local clusters
 Simulations on the a⁻¹ ~ 2.7 GeV 48³ ensemble ARCHER UoE: Cray XC30 DiRAC UoE: BG/Q

Extra: Heavy MDWF

Figures: [Boyle et al. JHEP 1604 (2016) 037]

- $M_5 = 1.6$ has smallest discretization errors
- For $am \gtrsim 0.4 \ m_{\rm res}$ does not plateau