Semi-leptonic B and B_{s}-decays with charming hadronic final state

Jonathan Flynn, Taku Izubuchi, Andreas Jüttner, Taichi Kawanai, Christoph Lehner, Edwin Lizarazo, Amarjit Soni (PI), Oliver Witzel RBC-UKQCD collaboration

http://rbc.phys.columbia.edu/USQCD/B-physics/
USQCD All-hands Meeting
Upton, NY, April 29, 2016

Motivation: CKM unitarity triangle fit

$\left|V_{c b}\right|$ enters crucially as normalization of the unitarity triangle

$$
\varepsilon_{K} \propto\left|V_{c b}\right|^{4}
$$

Motivation

- Form factors for $B \rightarrow D^{(*)} \ell \nu$
\rightarrow Allow to determine the CKM matrix-element $\left|V_{c b}\right|$
$\rightarrow\left|V_{c b}\right|$ enters as normalization in the unitary triangle fit
$\rightarrow 2-3 \sigma$ discrepancey between $\left|V_{c b}\right|^{\text {incl }}$ and $\left|V_{c b}\right|^{\text {excl }}$
\rightarrow Atlas, CMS, LHCb and Belle II will improve experimental results
- $2-3 \sigma$ tension in $R_{D^{(*)}}$ ratio - independent of $\left|V_{c b}\right|$
[Fajfer et al. PRD 85 (2012) 094025],[J. Bailey et al. PRL 109 (2012) 071802], [BaBar PRL 109 (2012) 101802]

$$
R_{D^{(*)}}=\mathcal{B}\left(B \rightarrow D^{(*)} \tau \nu_{\tau}\right) / \mathcal{B}\left(B \rightarrow D^{(*)} \ell \nu_{\ell}\right) \text {, with } \ell=e, \mu
$$

\rightarrow Due to its mass τ is sensitive to both form factors $f_{+}\left(q^{2}\right)$ and $f_{0}\left(q^{2}\right)$, $\ell=e, \mu$ are dominated by $f_{+}\left(q^{2}\right)$
\rightarrow Anomaly in $R_{D^{*}}$ is seen by BaBar, LHCb, and Belle
\rightarrow New physics?

Motivation: $R_{D^{(*)}}$

$B \rightarrow D^{(*)} T V$

Very preliminary \& unofficial average including

Figure: [Talk by T. Gershon at MIAPP June 2015]

Our RHQ Project

- Use domain-wall light quarks and nonperturbatively tuned relativistic
b-quarks to compute at few-percent precision
- Nonperturbative tuning of RHQ parameters [PRD 86 (2012) 116003]
- Decay constants f_{B} and $f_{B_{s}}$ [PRD 91 (2015) 054502]
- $B \rightarrow \pi \ell \nu$ and $B_{s} \rightarrow K \ell \nu$ form factors [PRD 91 (2015) 074510]
- $g_{B^{*} B \pi}$ coupling constant [PRD 93 (2016) 014510]
- $B^{0}-\overline{B^{0}}$ mixing
- Rare B decays [arXiv:1511.06622]
- $f_{B}, f_{B_{s}}$, and semi-leptonic form factors
- O (a) improvement at 1-loop and mostly nonperturbative renormalization
- Correction factors and coefficients computed at 1-loop
- B mixing
- Tree-level $O(a)$ improvement
- Perturbative or mostly nonperturbative renormalization
$B_{(s)} \rightarrow D_{(s)}^{(*)}$ form factors

- Re-use DWF point-source light and strange quark propagators
- Generate Gaussian smeared MDWF charm quark propagators (on the fly)
- Create Gaussian smeared-source sequential heavy quark propagators
- Compute all possible contractions for pseudoscalar or vector final states
- General building blocks code incl. terms for 1-loop $O\left(\alpha_{S} a\right)$ improvement
- Coefficients to be computed in lattice perturbation theory

2+1 Flavor Domain-Wall Iwasaki ensembles

L	$a^{-1}(\mathrm{GeV})$	$a m_{l}$	$a m_{s}$	$M_{\pi}(\mathrm{MeV})$	\# configs.	\#sources	
24	1.785	0.005	0.040	338	1636	1	[PRD 78 (2008) 114509]
24	1.785	0.010	0.040	434	1419	1	[PRD 78 (2008) 114509]
32	2.383	0.004	0.030	301	628	2	[PRD 83 (2011) 074508]
32	2.383	0.006	0.030	362	889	2	[PRD 83 (2011) 074508]
32	2.383	0.008	0.030	411	544	2	[PRD 83 (2011) 074508]
48	1.730	0.00078	0.0362	139	40	$81 / 1^{\star}$	[PRD 93 (2016) 074505]
64	2.359	0.000678	0.02661	139	-	-	[PRD 93 (2016) 074505]
48	~ 2.7	0.002144	0.02144	~ 250	>50	24	[in progress]

* All mode averaging: 81 "sloppy" and 1 "exact" solve [Blum et al. PRD 88 (2012) 094503]
- Lattice spacing determined from combined analysis [Blum et al. PRD 93 (2016) 074505]
- $a: \sim 0.11 \mathrm{fm}, \sim 0.08 \mathrm{fm}, \sim 0.07 \mathrm{fm}$

Up, down, and strange quarks

- Domain-wall fermions with same parameters as in the sea-sector (domain-wall hight M_{5}, extension of $5^{\text {th }}$ dimension L_{s})
- Unitary and partially quenched quark masses
- Strange quarks at/near physical the physical value

Charm quarks

- Möbius DWF optimized for heavy quarks [Boyle et al. JHEP 1604 (2016) 037]
- $M_{5}=1.6, L_{s}=12$
- Discretization errors well under control for $a m_{c}<0.45$
\rightarrow On coarse ($a^{-1}=1.785 \mathrm{GeV}$) ensembles we simulate just below $m_{c}^{\text {phys }}$
\rightarrow Simulate 3-4 charm-like masses and then extrapolate/interpolate
\rightarrow Linear extrapolation is small and benign; interpolation is safe

Charm extrapolation

Figure: [Boyle et al. arXiv:1511.09328]

- Open triangles: simulated data with mistuned valence strange quark mass
- Squares: data after correcting valence strange quark
- Circles: interpolation to reference masses

MDWF charm quarks

Advantages

- Very similar setup for computing $B_{s} \rightarrow D_{s}$ as for $B_{s} \rightarrow K$
\rightarrow Only minor modifications for the perturbative calculations
- No nonperturbative tuning of the RHQ action for charm quarks
- Allows to explore new concept of heavy DWF for semileptonic decays
\rightarrow Fully nonperturbative renormalization of f_{D} in progress

Disadvantages

- Larger numerical costs than RHQ charm
- On coarse ensembles small extrapolation needed

Bottom quarks

- Relativistic Heavy Quark action developed by Christ, Li, and Lin [Christ et al. PRD 76 (2007) 074505], [Lin and Christ PRD 76 (2007) 074506]
- Allows to tune the three parameters ($m_{0} a, c_{P}, \zeta$) nonperturbatively [PRD 86 (2012) 116003]
- Builds upon Fermilab approach [El-Khadra et al. PRD 55 (1997) 3933] by tuning all parameters of the clover action non-perturbatively; close relation to the Tsukuba formulation [S. Aoki et al. PTP 109 (2003) 383]
- Heavy quark mass is treated to all orders in $\left(m_{b} a\right)^{n}$
- Expand in powers of the spatial momentum through $O(\vec{p} a)$
- Resulting errors will be of $O\left(\vec{p}^{2} a^{2}\right)$
- Allows computation of heavy-light quantities with discretization errors of the same size as in light-light quantities
- Applies for all values of the quark mass
- Has a smooth continuum limit
- Recently re-tuned to account for updated values of a^{-1}

Proposal 2016/17

- Request: 16.0 M Jpsi core hours for computing +3.8 M Jpsi core hours for storage
- Aim: compute $B_{(s)} \rightarrow D_{(s)}$ form factors and determine $\left|V_{c b}\right|$ as well as $R_{D^{(*)}}$ ratios
- Provide results based on different gauge fields and actions and thus with uncorrelated statistical and different systematic errors to existing results in the literature
- Explore semileptonic decays with heavy MDWF

Questions from the SPC (shortend)

1) Expectations for the precision of your calculation (stat. and sys.)

- We target statistical and systematic errors to be both less than 2%

2) Controlling the error of the charm extrapolation and expected size

- The charm extrapolation is small and we expect a sub-percent error

3) Plan to use double-ratios like Fermilab/MILC

- Double ratios roughly double the costs so we did not propose to use them; we are however investigating the advantages and may refine our computational strategy

4) Have you considered a multi-mass inverter for DW charm propagators?

- Multi-mass solvers do not exist for DWF

5) Have you considered performing a blind analysis?

- Yes, we look into adding a blinding factor to our PT computed factors

6) Can you run on the new Jlab machine, if a) cpu, b) GPU, c) KNL?

- Sorry, transferring 200 TB will neither make the site managers nor us happy

Resources and Acknowledgements

- Simulations on $24^{3}, 32^{3}$, and the 48^{3} ensemble with physical pions USQCD: kaon, J/psi, Ds, Bc, and pi0 cluster at Fermilab BNL and Columbia U: small local clusters
- Simulations on the $a^{-1} \sim 2.7 \mathrm{GeV} 48^{3}$ ensemble ARCHER UoE: Cray XC30
DiRAC UoE: BG/Q

Extra: Heavy MDWF

Figures: [Boyle et al. JHEP 1604 (2016) 037]

- $M_{5}=1.6$ has smallest discretization errors
- For $a m \gtrsim 0.4 m_{\text {res }}$ does not plateau

