Spectroscopy of SU(4) gauge theory with multiple fermion representations

Ethan T. Neil (Colorado/RIKEN BNL) USQCD All Hands Meeting 2016

[with T. DeGrand (CU), W. Jay (CU), D. Hackett (CU), Y. Shamir (Tel Aviv), B. Svetitsky (Tel Aviv)]

Why multiple fermion representations?

 Never studied dynamically before. Does chiral symmetry breaking look different? Potential hierarchy of scales,

$$\langle \bar{\psi}_a \psi_a \rangle \gg \langle \bar{\psi}_b \psi_b \rangle$$
?

- Dynamical scale separation would be a rich playground for model building (some tenuous connections to old literature on "tumbling")
- Further motivation from composite Higgs models, particularly when partial compositeness is used to generate top quark mass.

Composite Higgs and partial compositeness

- <u>Technicolor models:</u> SU(2)_L broken by chiral condensate <ψψ>, gives
 EW scale v~f. Higgs boson emerges from dynamics of theory; pseudodilaton? Some lattice interest (LSD, LatHC proposals.)
- Composite Higgs: SU(2)_L preserved by chiral condensate <ψψ>. Higgs state is exact Goldstone: potential generated by interactions breaks EW, leading to v<f. Limited study on lattice to date.
- In either framework, SM fermion masses from four-fermion interactions:

Extended technicolor:
$$\bar{q}q\bar{\psi}\psi \sim \bar{q}q\mathcal{O}_{ETC}$$

Partial compositeness:
$$q\psi\psi\psi\sim q\mathcal{O}_{PC} \qquad \text{mass mixing!}$$

 Partial compositeness is argued to improve FCNC bounds (with walking/ large anomalous dimensions), but we are more agnostic: interesting to study the mechanism in any model where viable top-quark partners can arise.

Multiple irreps for partial compositeness

from G. Ferretti, "Gauge theories of partial compositeness", arXiv:1604.06467:

(irreps)¹. The requirement of two different irreps arises from the need to construct top-partners carrying both color and EW quantum numbers. With the notable exception of a model by L. Vecchi [9], this requires at least two separate irreps; one, generically denoted by ψ , carrying EW quantum numbers in addition to hypercolor, the other, χ , carrying ordinary color as well as hypercolor.

At low energies, the theory is expected to confine after having spent a part of the RG evolution

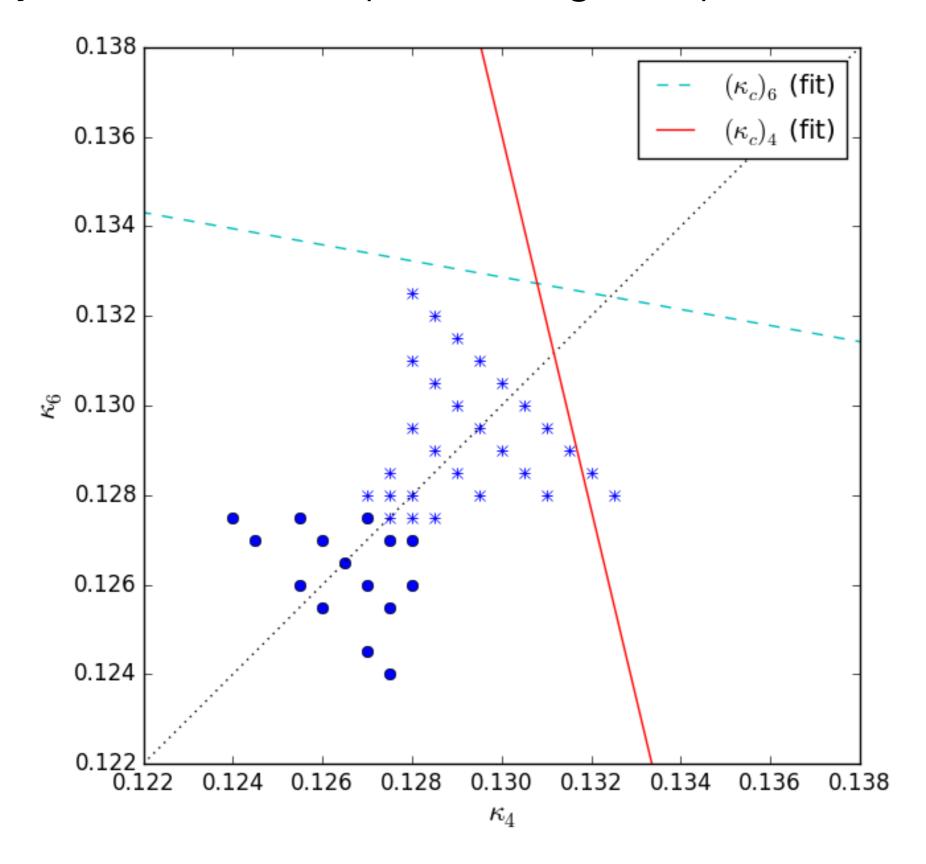
- Two fermion species: ψ (EW charged), χ (color charged)
- Top partners must be fermions with <u>both</u> electroweak and QCD charge: can arise as ψχψ, or χψχ. (Five-fermion bound states possible, but would require even bigger anomalous dims...)
- See reference for an attempt to catalogue theories by gauge group and fermion content

Our model: SU(4) with two irreps

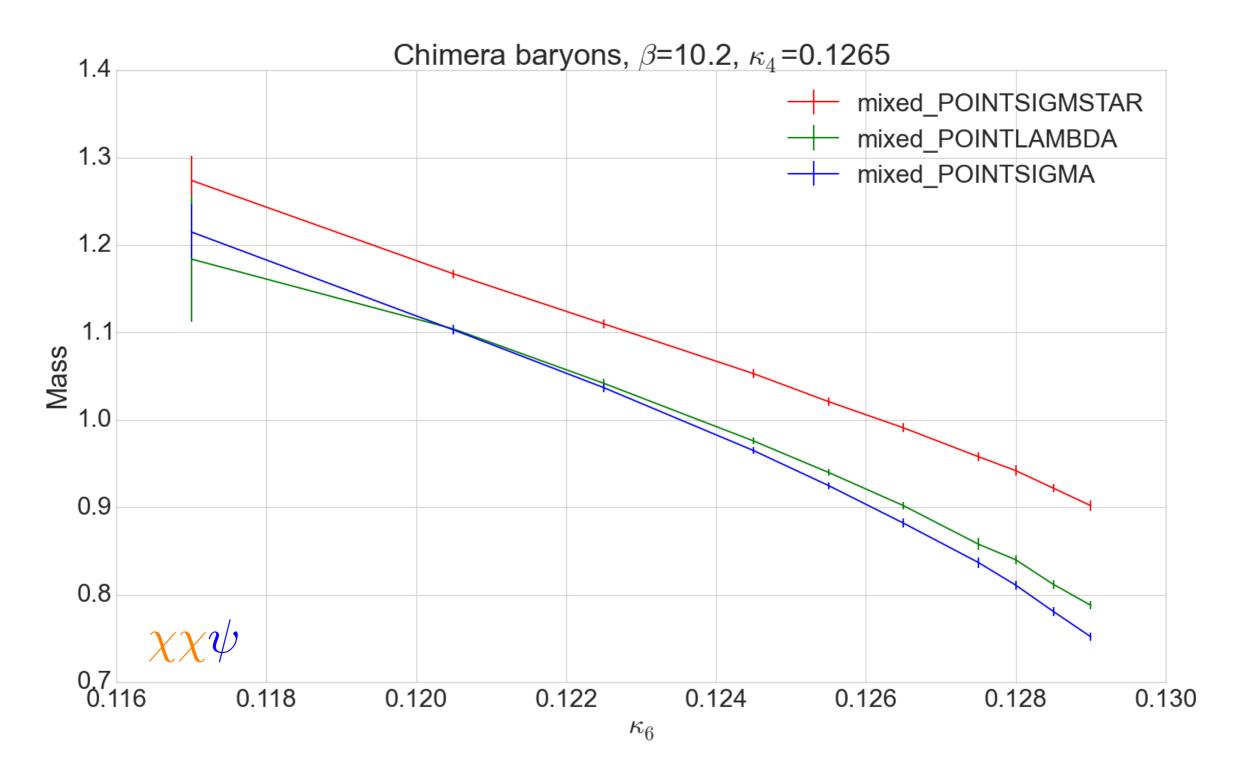
- Identified in Ferretti classification as one of the simplest UV completions! SU(4) gauge group, with two kinds of fermions: χ (fundamental [4] rep) and ψ (two-index antisymmetric [6] rep)
- The ψ 's are in a <u>real</u> representation. Chiral symmetry breaks $SU(N_Q)/SO(N_Q)$; Higgs boson is produced as one of these PNGBs. (No model detail in this talk: see 1604.06467.)
- Bound states?

"Mesons": "Baryons": $\bar{\chi}\chi$ $\chi\chi\chi\chi$ $\bar{\psi}\psi,\psi\psi$ $\psi\psi\psi\psi\psi\psi$

 $\chi \chi \psi$


"Chimeras":

top-quark partner!


Software: "multirep MILC"

- Based on a branch of the MILC v7 code, focused on Wilson fermions
- Dynamical code generation using Perl: N_c and representation(s) are fixed in code generation, allowing C compiler to optimize matrix ops
- Bells and whistles: clover term, nHYP smearing, Hasenbusch preconditioning, multi-level integrator, dislocation-suppressing "NDS" action (DeGrand, Shamir, Svetitsky: 1407.4201)
- We use all of the above, i.e. clover nHYP fermions w/NDS action; c_{sw} set to 1 (shown to work well w/smearing)

Preliminary results: finite-T phase diagram, β=7.75, 12³x6

Preliminary results: partially-quenched study of chimeras, 163x32

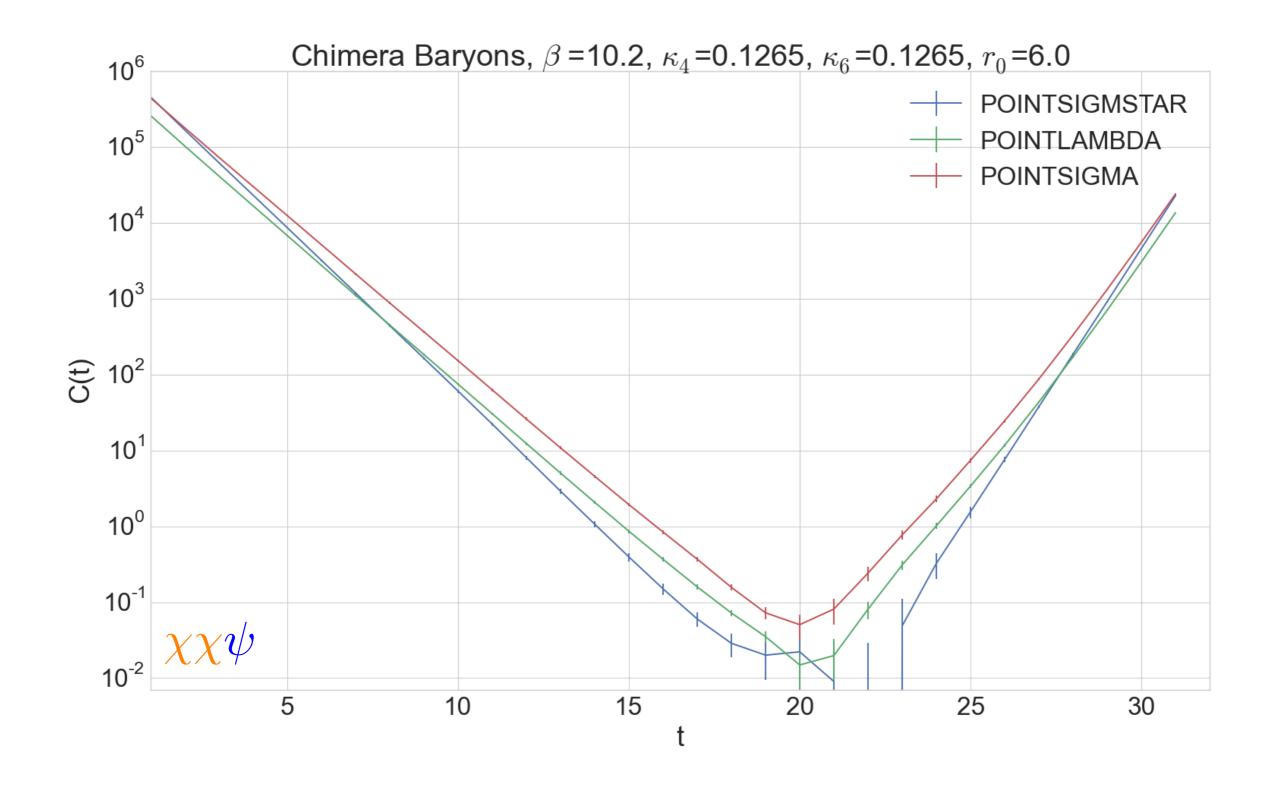
"Sigma"-like state (I=1) lighter than "lambda"-like (I=0) at small m₆ - inverted from QCD

(from W. Jay)

Resource request

- Initial study of spectroscopy; attempt to make contact with ChPT.
- Maintain roughly r₁/a~3.0 (a~0.1fm in QCD) and M_πL>4
- Extrapolate along three lines: decreasing m₄, m₆, and both
- Cost estimates using standard scaling from 12³x24 pilot study

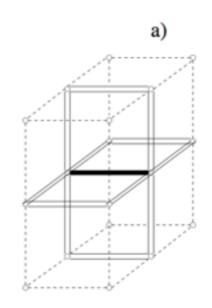
$$cost = \frac{24,000 \text{ core-hr}}{ktraj} \left(\frac{V}{16^3 \times 32}\right)^{5/4} \left(\frac{1.43}{r_1 M_{\pi,4}}\right)^2 \left(\frac{1.75}{r_1 M_{\pi,6}}\right)^2$$

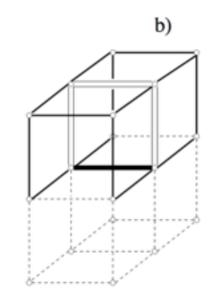

\overline{V}	$r_1M_{\pi,4}$	$r_1 M_{\pi,6}$	$M_{\pi,4}L$	$M_{\pi,6}L$	cost/ktraj	# traj
$16^3 \times 32$	1.5	1.5	8.0	8.0	30k	4000
$16^3 \times 32$	1.5	1.2	8.0	6.4	46k	4000
$16^3 \times 32$	1.5	0.9	8.0	4.8	82k	4000
$16^3 \times 32$	1.2	1.5	6.4	8.0	46k	4000
$16^3 \times 32$	0.9	1.5	4.8	8.0	82k	4000
$16^3 \times 32$	1.2	1.2	6.4	6.4	72k	4000
$16^3 \times 32$	0.9	0.9	4.8	4.8	229k	4000
$24^3 \times 48$	1.5	0.6	16.0	6.4	1.41m	1000
$24^3 \times 48$	0.6	1.5	6.4	16.0	$1.41\mathrm{m}$	1000
total					5.17m	

Conclusion

- Gauge theory with multiple fermion irreps is wellmotivated, and has not been studied dynamically. High interest in context of partial compositeness BSM models.
- SU(4) two-irrep target theory is one of the simpler examples, many interesting quantities can be studied for composite Higgs phenomenology, and we can look for dynamical scale separation
- We request 5.17 million J/Psi core-hours for our calculation, and 0.5 terabytes of storage

Backup slides


Preliminary results: partially-quenched chimera baryon correlator



NDS action (arXiv:1407.4201)

 HYP smearing: staple sum over "fat links" added to original link. nHYP normalizes the smeared link W, i.e.

$$V = \Omega(\Omega^{\dagger}\Omega)^{-1/2}$$

• $Q^{-1/2} = (\Omega^{\dagger}\Omega)^{-1/2}$ appears in the fermion force, and small eigenvalues can cause spikes. "nHYP dislocation suppressing" action cancels these with additional marginal gauge terms:

$$S_{\mathrm{NDS}} = \frac{1}{2N_c} \sum_{x} \mathrm{tr} \left(\gamma_1 \sum_{\mu} \tilde{Q}_{x,\mu}^{-1} + \gamma_2 \sum_{\mu \neq \nu} \bar{Q}_{x,\mu;\nu}^{-1} \right)$$
 Bare gauge coupling depends on β and γ ; fix the ratio and adjust move lattice spacing.

depends on β and γ ; we fix the ratio and adjust β to move lattice spacing.