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There is no doubt that the SM is incomplete since we cannot even account for a number
of basic observations:

• Neutrino physics: Only recently it has been possible to have some definite an-
swers about properties of neutrinos. We now know that they have a tiny mass,
which can be naturally accommodated in extensions of the SM, featuring for ex-
ample a see-saw mechanism. We do not yet know if the neutrinos have a Dirac
or a Majorana nature.

• Origin of bright and dark mass: Leptons, quarks and the gauge bosons medi-
ating the weak interactions possess a rest mass. Within the SM this mass can be
accounted for by the Higgs mechanism, which constitutes the electroweak sym-
metry breaking sector of the SM. However, the associated Higgs particle has not
yet been discovered. Besides, the SM cannot account for the observed large frac-
tion of dark mass of the universe. What is interesting is that in the universe the
dark matter is about five times more abundant than the known baryonic matter,
i.e. bright matter. We do not know why the ratio of dark to bright matter is of
order unity.

• Matter-antimatter asymmetry: From our everyday experience we know that
there is very little bright antimatter in the universe. The SM fails to predict the
observed excess of matter.

These arguments do not imply that the SM is necessarily incorrect, but it must be
extended to answer any of the questions raised above. The truth is that we do not have
an answer to the basic question: What lies beneath the SM?

A number of possible generalizations have been conceived (see [2, 3, 4, 5, 6, 7] for
reviews). Such extensions are introduced on the base of one or more guiding principles
or prejudices. Two technical reviews are [8, 9].

In the models we will consider here the electroweak symmetry breaks via a fermion
bilinear condensate. The Higgs sector of the SM becomes an e�ective description of a
more fundamental fermionic theory. This is similar to the Ginzburg-Landau theory of
superconductivity. If the force underlying the fermion condensate driving electroweak
symmetry breaking is due to a strongly interacting gauge theory these models are
termed Technicolor (TC).

TC, in brief, is an additional non-abelian and strongly interacting gauge theory
augmented with (techni)fermions transforming under a given representation of the
gauge group. The Higgs Lagrangian is replaced by a suitable new fermion sector
interacting strongly via a new gauge interaction (technicolor). Schematically:

LHiggs ⇤ �
1
4

Fµ⇤Fµ⇤ + iQ̄�µDµQ + . . . , (1.14)

where, to be as general as possible, we have left unspecified the underlying nonabelian
gauge group and the associated technifermion (Q) representation. The dots represent
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quarks and leptons without introducing Flavor Changing Neutral Currents (FCNC)s
at the tree level. The Higgs sector of the SM possesses, when the gauge couplings are
switched o�, an SU(2)L ⇤ SU(2)R symmetry. The full symmetry group can be made
explicit when re-writing the Higgs doublet field

H =
1⌦
2

⇤
⇤2 + i⇤1
⌅ � i⇤3

⌅
(1.1)

as the right column of the following two by two matrix:

1⌦
2

�
⌅ + i⌦⇧ · ⌦⇤⇥ ⇧M . (1.2)

The first column can be identified with the column vector i⇧2H⌅ while the second with
H. ⇧2 is the second Pauli matrix. The SU(2)L⇤SU(2)R group acts linearly on M according
to:

M⌃ gLMg†R and gL/R � SU(2)L/R . (1.3)

One can verify that:

M
�
1 � ⇧3⇥

2
= (0 , H) . M

�
1 + ⇧3⇥

2
= (i ⇧2H⌅ , 0) . (1.4)

The SU(2)L symmetry is gauged by introducing the weak gauge bosons Wa with a =
1, 2, 3. The hypercharge generator is taken to be the third generator of SU(2)R. The
ordinary covariant derivative acting on the Higgs, in the present notation, is:

DµM =  µM � i g WµM + i g⌥M Bµ , with Wµ =Wa
µ
⇧a

2
, Bµ = Bµ

⇧3

2
. (1.5)

The Higgs Lagrangian is

L =
1
2

Tr
⇧
DµM†DµM

⌃
�

m2
M

2
Tr
⇧
M†M

⌃
� �

4
Tr
⇧
M†M

⌃2
. (1.6)

At this point one assumes that the mass squared of the Higgs field is negative and this
leads to the electroweak symmetry breaking. Except for the Higgs mass term the other
SM operators have dimensionless couplings meaning that the natural scale for the SM
is encoded in the Higgs mass1. We recall that the Higgs Lagrangian has a familiar
form since it is identical to the linear ⌅ Lagrangian which was introduced long ago to
describe chiral symmetry breaking in QCD with two light flavors.

1The mass of the proton is due mainly to strong interactions, however its value cannot be determined
within QCD since the associated renormalization group invariant scale must be fixed to an hadronic
observable.
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What is our composite Higgs paradigm?

elementary scalar? 
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What is our composite Higgs paradigm?

elementary scalar? 

yes, I know, there is perhaps the diphoton bump at 750 GeV!



composite Higgs mechanism
‣ m=0 fermion doublet SU(2) flavor sextet 
rep in our proposal

▸ light scalar is the excitation of the chiral 
condensate

▸ Goldstone particle important in 
composite Higgs mechanism …

▸ fπ  sets the EW scale ~ 250 GeV and gauge 
coupling g

 



composite Higgs mechanism
‣ m=0 fermion doublet SU(2) flavor sextet 
rep in our proposal

▸ light scalar is the excitation of the chiral 
condensate

▸ Goldstone particle important in 
composite Higgs mechanism …

▸ fπ  sets the EW scale ~ 250 GeV and gauge 
coupling g

    Higgs mechanism does not depend  
   on hypercharge content of fermion  
   multiplet after EW is gauged! 

   Goldstone content and  
   hypercharge content are important 
   if model wants more than just to be 
   a gauge theory study. 

   I will discuss in this context the  
   BSM models in play  with focus on  
   our sextet proposal.



Probing technicolor theories with staggered fermions Kieran Holland

Figure 1: The conformal window for SU(N) gauge theories with Nf techniquarks in various representations,

from [3]. The shaded regions are the windows, for fundamental (gray), 2-index antisymmetric (blue), 2-index

symmetric (red) and adjoint (green) representations.

1. Introduction

The LHC will probe the mechanism of electroweak symmetry breaking. A very attractive

alternative to the standard Higgs mechanism, with fundamental scalars, involves new strongly-

interacting gauge theories, known as technicolor [1, 2]. Such models avoid difficulties of theories

with scalars, such as triviality and fine-tuning. Chiral symmetry must be spontaneously broken in

a technicolor theory, to provide the technipions which generate the W± and Z masses and break

electroweak symmetry. Although this duplication of QCD is appealing, precise electroweak mea-

surements have made it difficult to find a viable candidate theory. It is also necessary to enlarge the

theory (extended technicolor) to generate quark masses, without generating large flavor-changing

neutral currents, which is challenging.

Technicolor theories have lately enjoyed a resurgence, due to the exploration of various tech-

niquark representations [3]. Feasible candidates have fewer new flavors, reducing tension with

electroweak constraints. If a theory is almost conformal, it is possible this generates additional

energy scales, which could help in building the extended technicolor sector. There are estimates

of which theories are conformal for various representations, shown in Fig. 1. For SU(N) gauge

theory, if the number of techniquark flavors is less than some critical number, conformal and chiral

symmetries are broken and the theory is QCD-like. For future model-building, it is crucial to go be-

yond these estimates and determine precisely where the conformal windows are. There have been

a number of recent lattice simulations of technicolor theories, attempting to locate the conformal

windows for various representations [4, 5, 6, 7, 8].

2. Dirac eigenvalues and chiral symmetry

The connection between the eigenvalues ! of the Dirac operator and chiral symmetry breaking
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Figure 1: The conformal window for SU(N) gauge theories with Nf techniquarks in various representations,
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3-channel solution, even if exotica are excluded from the analysis. The pilot study presented
here for future planning is restricted to the single channel problem using scalar correlators
which are built from connected and disconnected loops of fermion propagators [60].
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FIG. 2. The fermion loops were evaluated using stochastic methods with full time dilution and
48 noise vectors on each gauge configuration [60]. The correlator Cconn(t) on the left plot and the
correlator Csinglet = Cconn +Cdisc(t) on the right plot were assembled from the stochastic fermion
propagators. The left side plot shows the mass of the lowest non-singlet scalar (blue exponential
fit). The plot also displays the oscillating pseudo-scalar parity partner (magenta) and the full
correlator (red) fitting the data. On the right side plot, with larger errors in the limited pilot
study, the scalar singlet mass is considerably downshifted (blue exponential) and the presence of a
pseudo-scalar parity partner is not detectable. The conventional � = 6/g2 lattice gauge coupling,
setting the lattice spacing a, is shown in addition to the finite fermion mass am of the simulation.

The staggered lattice fermion formulation is deployed in the pilot study to demonstrate
feasibility with control of ⇥SB and serves as a lower bound for the required resources.
Domain wall fermions would be 10-20 times more demanding. The Symanzik improved
tree level gauge action is used with stout smeared gauge links to minimize lattice cut-o⇥
e⇥ects in the study. A staggered operator which creates a state that lies in the spin-taste
representation �S⇥�T also couples to one lying in the �4�5�S⇥�4�5�T representation. Thus
a staggered meson correlator has the general form

C(t) =
⇤

n

�
Ane

�mn(�S⇥�T)t + (�1)tBne
�mn(�4�5�S⇥�4�5�T)t

⇥

with oscillating contributions from parity partner states. For the scalar meson (�S ⇥ �T =
1⇥1), the parity partner is �4�5⇥�4�5 which corresponds to one of the pseudoscalars in the
analysis. For flavour singlet mesons, the correlator is of the form C(t) = Cconn(t) + Cdisc(t)
where Cconn(t) is the correlator coupled to the non-singlet meson state and Cdisc(t) is the
contribution of disconnected fermion loops in the annihilation diagram. Figure 2 on the
left shows the propagation of the lowest flavor-nonsinglet state together with its oscillating
parity partner, as determined by Cconn(t). The singlet scalar mass, the Higgs particle of
the strongly coupled gauge model, is determined from the flavor singlet correlator C(t)
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the basic fields decreases like a Gaussian and very rapidly becomes totally negligible.

The smoothing property of the gradient flow and the associated quark flow implies that correla-
tion functions of fields at non-zero flow times have no short-distance singularities. Renormalization
is nevertheless required, but turns out to be extremely simple. Explicitly, if Ot(x) is a bare, gauge-
invariant composite field at flow time t > 0 of degree n and n̄ in the quark and antiquark fields, the
renormalized field is given by

OR,t = (Zχ)
1
2 (n+n̄)Ot , (2.9)

where the renormalization constant Zχ is independent of t. In particular, the field (2.7) does not
require renormalization and the chiral densities (2.8) renormalize with the same factor Zχ .

The proof of these statements [2, 3] is based on an exact representation of the correlation
functions through a local field theory in 4+1 dimensions, the extra dimension being the flow time.
Zinn–Justin and Zwanziger [8] introduced the representation many years ago in their work on the
renormalization of the Langevin equation. In the pure gauge theory, the latter actually coincides
with the flow equation (2.1) except for the fact that it includes a noise term, which complicates the
situation and requires a renormalization of the Langevin time, for example.

3. Chiral condensate

In lattice QCD, the expectation value of the scalar density ūu+ d̄d of the up and down quarks
diverges like the second or third inverse power of the lattice spacing when the continuum limit is
taken. The divergent terms are proportional to the light-quark masses if the lattice theory preserves
chiral symmetry, but also in these cases their subtraction tends to give rise to important significance
losses or even some conceptual issues. Using the gradient flow, this problem can now be elegantly
bypassed [3].

3.1 Flow-time dependent condensate

Since the flow equations are chirally invariant, the quark field at non-zero flow times, χ(t,x),
transforms in the same way as the fundamental field ψ(x) under global chiral rotations. In particu-
lar, the light-quark chiral densities

Srst ±Prst , r,s ∈ {u,d}, (3.1)
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important issues: 

1. chiral symmetry breaking 

2.  mass anomalous dimension 

3.  effective low energy theory for Goldstone  
     dynamics coupled to the low mass scalar 
     sigma model or dilaton? 

4.  SPC asked about the diphoton 
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the chiral limit (or the physical up and down quark masses) also
makes the tunneling of topological charge a rare event, because of
the suppression of the fermion determinant for large topological
charges.

During the last decade, (i) and (ii) have been solved by the re-
alization of exact chiral symmetry on the lattice, with which the
topological charge is uniquely defined at any finite lattice spac-
ing by counting the number of fermionic zero-modes. (For recent
studies respecting the exact chiral symmetry, we refer [4,5].) How-
ever, (iii) remains insurmountable, since the correct sampling of
topology becomes increasingly more difficult towards realistic sim-
ulation with lighter quarks and finer lattices. A plausible solution
is to perform QCD simulations in a fixed topological sector and to
extract χt from local topological fluctuations. In [6] (see also [7]),
a general formula to transcribe any observable measured at a fixed
topological charge to its value in the θ vacuum is derived. As an
application, a new method to calculate χt is also proposed.

In this Letter, we use this method to precisely calculate χt
in two-flavor lattice QCD with exact chiral symmetry. The results
are compared with the prediction from chiral perturbation theory
(χPT) [8]

χt = mqΣ

N f
+O

(
m2

q
)
, (1)

for N f flavors of sea quarks with mass mq . The chiral conden-
sate Σ can be determined independently, e.g., from the low-lying
eigenvalues of the Dirac operator [9,10]. Therefore, the comparison
provides a critical test of the lattice approach to study the QCD
vacuum in the chiral regime.

A two-point function of the topological charge density ρ(x)
calculated in a finite volume Ω at a given topological charge Q
behaves as [6]

lim
|x|→∞

〈
ρ(x)ρ(0)

〉
Q = 1

Ω

(
Q 2

Ω
− χt − c4

2χtΩ

)
+O

(
Ω−3), (2)

where c4 = −(⟨Q 4⟩−3⟨Q 2⟩2)/Ω . The expectation value ⟨· · ·⟩Q de-
notes an average in a given topological sector Q . The correlation
does not vanish even for large separations, because of the violation
of the clustering property at fixed topological charge. We empha-
size that the derivation of (2) relies only on modest assumptions
such as ⟨Q 2⟩ ≫ 1 and Q ≪ ⟨Q 2⟩, which are the conditions to ap-
ply the saddle point expansion in the Fourier transform from a
fixed θ to a fixed Q . Except for these conditions, the formula is
model independent.

We consider, in particular, two spatial sub-volumes at t1 and t2,
for which the correlator is defined as

C(t1 − t2) ≡
〈
Q (t1)Q (t2)

〉
=

∑

x⃗1,x⃗2

〈
ρ(x1)ρ(x2)

〉
, (3)

where the summations run over the spatial sites x⃗1 and x⃗2 at t1
and t2, respectively. Its plateau at large |t1 − t2| can be used to
extract χt , provided that |c4| ≪ 2χ2

t Ω .
In order to preserve the exact chiral symmetry, which is es-

sential for the definition of the topological charge, we employ the
overlap-Dirac operator [12,13]

D(mq) =
(
m0 + mq

2

)
+

(
m0 − mq

2

)
γ5 sgn

[
HW (−m0)

]
, (4)

with mass mq . The kernel operator HW (−m0) is the conventional
Wilson–Dirac operator with a large negative mass term −m0.

In place of the topological charge density ρ(x) (and ρ(0))
in (2), we use mqP0(x) (and mqP0(0)), that were shown to give
the same asymptotic constant as (2) [6] (the original suggestion
is in [11]), where P0(x) is the flavor singlet pseudo-scalar den-
sity P0(x) ≡ 1

N f

∑N f
f =1 ψ̄ f (x)γ5[1 − aD(0)/(2m0)]ψ f (x). The cor-

Fig. 1. A schematic diagram for the time-correlation function of the flavor singlet
operator P0(x). Each solid line denotes the valence quark propagator.

relator Cη′ (t) ≡ ∑
x⃗⟨P0(x)P0(0)⟩ contains a connected and a dis-

connected diagram as shown in Fig. 1. If we pick the discon-
nected piece and identify a “topological charge density”, it can be
written as ρ1(x) = mq tr[γ5(Dc + mq)

−1
x,x ], where Dc is a chirally-

symmetric (γ5Dc + Dcγ5 = 0) nonlocal operator, relating to D(0)
by Dc = [1 − aD(0)/(2m0)]−1D(0) [14]. Integrated over the en-
tire lattice volume, ρ1(x) reduces to the number of fermionic
zero-modes, and thus has the necessary property for the topolog-
ical charge density. This implies that the correlator ⟨ρ1(x)ρ1(0)⟩
has the same asymptotic constant as (2). However, the correlator
⟨mqP0(x)mqP0(0)⟩ approaches the constant with the rate governed
by the η′ mass, e−mη′ |x| , which is much faster than e−mπ |x| appear-
ing in ⟨ρ1(x)ρ1(0)⟩.

Simulations are carried out for two-flavor (N f = 2) QCD
on a 163 × 32 lattice at a lattice spacing ∼ 0.12 fm. For the
gluon part, the Iwasaki action is used at β = 2.30 together
with unphysical Wilson fermions and associated twisted-mass
ghosts [15]. The unphysical degrees of freedom generate a fac-
tor det[H2

W (−m0)/(H2
W (−m0) +µ2)] in the partition function (we

take m0 = 1.6 and µ = 0.2) that suppresses the near-zero eigen-
value of HW (−m0) and thus makes the numerical operation with
the overlap operator (4) substantially faster. Furthermore, since the
exact zero eigenvalue is forbidden, the global topological change is
preserved during the molecular dynamics evolution of the gauge
field. Our main runs are performed at Q = 0, while Q = −2 and
−4 configurations are also generated at one sea quark mass in or-
der to check the consistency as described below. Ergordicity within
a given global topological charge is satisfied if the configuration
space of that topological sector forms a connected manifold. This
is indeed the case in the continuum SU(3) gauge theory on a four-
dimensional torus, and therefore is probably also true at small
lattice spacing adopted in this work.

We use the Hybrid Monte Carlo algorithm [16] with the mass
preconditioning [17]. The fermion masses for the preconditioner
were chosen to be 0.4 for heavier sea quark masses and 0.2 for
the two lightest ones (see later). We exploit the rational approxi-
mation a la Zolotarev for the sign function in (4) after projecting
out low-lying eigenmodes of HW (−m0). With the number of poles
in the rational function to be 8–10, the accuracy of O (10−(7−8)) is
achieved for the sign function. The simulations have been done
in two phases for each sea quark mass. In the first phase the
nested conjugate gradient (CG) is used to invert the overlap oper-
ator (4) (see [18,19] for details). On the other hand, in the second
phase we use the five-dimensional implementation of the over-
lap solver without the low-mode projection. The target accuracy of
O (10−(7−8)) is maintained by adding an additional Metropolis step
calculated with the nested CG [20].

For the sea quark mass mq we take six values: 0.015, 0.025,
0.035, 0.050, 0.070, and 0.100 that cover the mass range ms/6−ms
with ms the physical strange quark mass. After discarding 500 tra-
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alization of exact chiral symmetry on the lattice, with which the
topological charge is uniquely defined at any finite lattice spac-
ing by counting the number of fermionic zero-modes. (For recent
studies respecting the exact chiral symmetry, we refer [4,5].) How-
ever, (iii) remains insurmountable, since the correct sampling of
topology becomes increasingly more difficult towards realistic sim-
ulation with lighter quarks and finer lattices. A plausible solution
is to perform QCD simulations in a fixed topological sector and to
extract χt from local topological fluctuations. In [6] (see also [7]),
a general formula to transcribe any observable measured at a fixed
topological charge to its value in the θ vacuum is derived. As an
application, a new method to calculate χt is also proposed.

In this Letter, we use this method to precisely calculate χt
in two-flavor lattice QCD with exact chiral symmetry. The results
are compared with the prediction from chiral perturbation theory
(χPT) [8]

χt = mqΣ

N f
+O

(
m2

q
)
, (1)

for N f flavors of sea quarks with mass mq . The chiral conden-
sate Σ can be determined independently, e.g., from the low-lying
eigenvalues of the Dirac operator [9,10]. Therefore, the comparison
provides a critical test of the lattice approach to study the QCD
vacuum in the chiral regime.

A two-point function of the topological charge density ρ(x)
calculated in a finite volume Ω at a given topological charge Q
behaves as [6]

lim
|x|→∞

〈
ρ(x)ρ(0)

〉
Q = 1

Ω

(
Q 2

Ω
− χt − c4

2χtΩ

)
+O

(
Ω−3), (2)

where c4 = −(⟨Q 4⟩−3⟨Q 2⟩2)/Ω . The expectation value ⟨· · ·⟩Q de-
notes an average in a given topological sector Q . The correlation
does not vanish even for large separations, because of the violation
of the clustering property at fixed topological charge. We empha-
size that the derivation of (2) relies only on modest assumptions
such as ⟨Q 2⟩ ≫ 1 and Q ≪ ⟨Q 2⟩, which are the conditions to ap-
ply the saddle point expansion in the Fourier transform from a
fixed θ to a fixed Q . Except for these conditions, the formula is
model independent.

We consider, in particular, two spatial sub-volumes at t1 and t2,
for which the correlator is defined as

C(t1 − t2) ≡
〈
Q (t1)Q (t2)

〉
=

∑

x⃗1,x⃗2

〈
ρ(x1)ρ(x2)

〉
, (3)

where the summations run over the spatial sites x⃗1 and x⃗2 at t1
and t2, respectively. Its plateau at large |t1 − t2| can be used to
extract χt , provided that |c4| ≪ 2χ2

t Ω .
In order to preserve the exact chiral symmetry, which is es-

sential for the definition of the topological charge, we employ the
overlap-Dirac operator [12,13]

D(mq) =
(
m0 + mq

2

)
+

(
m0 − mq

2

)
γ5 sgn

[
HW (−m0)

]
, (4)

with mass mq . The kernel operator HW (−m0) is the conventional
Wilson–Dirac operator with a large negative mass term −m0.

In place of the topological charge density ρ(x) (and ρ(0))
in (2), we use mqP0(x) (and mqP0(0)), that were shown to give
the same asymptotic constant as (2) [6] (the original suggestion
is in [11]), where P0(x) is the flavor singlet pseudo-scalar den-
sity P0(x) ≡ 1

N f

∑N f
f =1 ψ̄ f (x)γ5[1 − aD(0)/(2m0)]ψ f (x). The cor-

Fig. 1. A schematic diagram for the time-correlation function of the flavor singlet
operator P0(x). Each solid line denotes the valence quark propagator.

relator Cη′ (t) ≡ ∑
x⃗⟨P0(x)P0(0)⟩ contains a connected and a dis-

connected diagram as shown in Fig. 1. If we pick the discon-
nected piece and identify a “topological charge density”, it can be
written as ρ1(x) = mq tr[γ5(Dc + mq)

−1
x,x ], where Dc is a chirally-

symmetric (γ5Dc + Dcγ5 = 0) nonlocal operator, relating to D(0)
by Dc = [1 − aD(0)/(2m0)]−1D(0) [14]. Integrated over the en-
tire lattice volume, ρ1(x) reduces to the number of fermionic
zero-modes, and thus has the necessary property for the topolog-
ical charge density. This implies that the correlator ⟨ρ1(x)ρ1(0)⟩
has the same asymptotic constant as (2). However, the correlator
⟨mqP0(x)mqP0(0)⟩ approaches the constant with the rate governed
by the η′ mass, e−mη′ |x| , which is much faster than e−mπ |x| appear-
ing in ⟨ρ1(x)ρ1(0)⟩.

Simulations are carried out for two-flavor (N f = 2) QCD
on a 163 × 32 lattice at a lattice spacing ∼ 0.12 fm. For the
gluon part, the Iwasaki action is used at β = 2.30 together
with unphysical Wilson fermions and associated twisted-mass
ghosts [15]. The unphysical degrees of freedom generate a fac-
tor det[H2

W (−m0)/(H2
W (−m0) +µ2)] in the partition function (we

take m0 = 1.6 and µ = 0.2) that suppresses the near-zero eigen-
value of HW (−m0) and thus makes the numerical operation with
the overlap operator (4) substantially faster. Furthermore, since the
exact zero eigenvalue is forbidden, the global topological change is
preserved during the molecular dynamics evolution of the gauge
field. Our main runs are performed at Q = 0, while Q = −2 and
−4 configurations are also generated at one sea quark mass in or-
der to check the consistency as described below. Ergordicity within
a given global topological charge is satisfied if the configuration
space of that topological sector forms a connected manifold. This
is indeed the case in the continuum SU(3) gauge theory on a four-
dimensional torus, and therefore is probably also true at small
lattice spacing adopted in this work.

We use the Hybrid Monte Carlo algorithm [16] with the mass
preconditioning [17]. The fermion masses for the preconditioner
were chosen to be 0.4 for heavier sea quark masses and 0.2 for
the two lightest ones (see later). We exploit the rational approxi-
mation a la Zolotarev for the sign function in (4) after projecting
out low-lying eigenmodes of HW (−m0). With the number of poles
in the rational function to be 8–10, the accuracy of O (10−(7−8)) is
achieved for the sign function. The simulations have been done
in two phases for each sea quark mass. In the first phase the
nested conjugate gradient (CG) is used to invert the overlap oper-
ator (4) (see [18,19] for details). On the other hand, in the second
phase we use the five-dimensional implementation of the over-
lap solver without the low-mode projection. The target accuracy of
O (10−(7−8)) is maintained by adding an additional Metropolis step
calculated with the nested CG [20].

For the sea quark mass mq we take six values: 0.015, 0.025,
0.035, 0.050, 0.070, and 0.100 that cover the mass range ms/6−ms
with ms the physical strange quark mass. After discarding 500 tra-

JLQCD and TWQCD Collaborations / Physics Letters B 665 (2008) 294–297 295

the chiral limit (or the physical up and down quark masses) also
makes the tunneling of topological charge a rare event, because of
the suppression of the fermion determinant for large topological
charges.

During the last decade, (i) and (ii) have been solved by the re-
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a general formula to transcribe any observable measured at a fixed
topological charge to its value in the θ vacuum is derived. As an
application, a new method to calculate χt is also proposed.

In this Letter, we use this method to precisely calculate χt
in two-flavor lattice QCD with exact chiral symmetry. The results
are compared with the prediction from chiral perturbation theory
(χPT) [8]
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for N f flavors of sea quarks with mass mq . The chiral conden-
sate Σ can be determined independently, e.g., from the low-lying
eigenvalues of the Dirac operator [9,10]. Therefore, the comparison
provides a critical test of the lattice approach to study the QCD
vacuum in the chiral regime.
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behaves as [6]

lim
|x|→∞

〈
ρ(x)ρ(0)

〉
Q = 1

Ω

(
Q 2

Ω
− χt − c4

2χtΩ

)
+O

(
Ω−3), (2)

where c4 = −(⟨Q 4⟩−3⟨Q 2⟩2)/Ω . The expectation value ⟨· · ·⟩Q de-
notes an average in a given topological sector Q . The correlation
does not vanish even for large separations, because of the violation
of the clustering property at fixed topological charge. We empha-
size that the derivation of (2) relies only on modest assumptions
such as ⟨Q 2⟩ ≫ 1 and Q ≪ ⟨Q 2⟩, which are the conditions to ap-
ply the saddle point expansion in the Fourier transform from a
fixed θ to a fixed Q . Except for these conditions, the formula is
model independent.

We consider, in particular, two spatial sub-volumes at t1 and t2,
for which the correlator is defined as
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relator Cη′ (t) ≡ ∑
x⃗⟨P0(x)P0(0)⟩ contains a connected and a dis-

connected diagram as shown in Fig. 1. If we pick the discon-
nected piece and identify a “topological charge density”, it can be
written as ρ1(x) = mq tr[γ5(Dc + mq)

−1
x,x ], where Dc is a chirally-

symmetric (γ5Dc + Dcγ5 = 0) nonlocal operator, relating to D(0)
by Dc = [1 − aD(0)/(2m0)]−1D(0) [14]. Integrated over the en-
tire lattice volume, ρ1(x) reduces to the number of fermionic
zero-modes, and thus has the necessary property for the topolog-
ical charge density. This implies that the correlator ⟨ρ1(x)ρ1(0)⟩
has the same asymptotic constant as (2). However, the correlator
⟨mqP0(x)mqP0(0)⟩ approaches the constant with the rate governed
by the η′ mass, e−mη′ |x| , which is much faster than e−mπ |x| appear-
ing in ⟨ρ1(x)ρ1(0)⟩.

Simulations are carried out for two-flavor (N f = 2) QCD
on a 163 × 32 lattice at a lattice spacing ∼ 0.12 fm. For the
gluon part, the Iwasaki action is used at β = 2.30 together
with unphysical Wilson fermions and associated twisted-mass
ghosts [15]. The unphysical degrees of freedom generate a fac-
tor det[H2

W (−m0)/(H2
W (−m0) +µ2)] in the partition function (we

take m0 = 1.6 and µ = 0.2) that suppresses the near-zero eigen-
value of HW (−m0) and thus makes the numerical operation with
the overlap operator (4) substantially faster. Furthermore, since the
exact zero eigenvalue is forbidden, the global topological change is
preserved during the molecular dynamics evolution of the gauge
field. Our main runs are performed at Q = 0, while Q = −2 and
−4 configurations are also generated at one sea quark mass in or-
der to check the consistency as described below. Ergordicity within
a given global topological charge is satisfied if the configuration
space of that topological sector forms a connected manifold. This
is indeed the case in the continuum SU(3) gauge theory on a four-
dimensional torus, and therefore is probably also true at small
lattice spacing adopted in this work.

We use the Hybrid Monte Carlo algorithm [16] with the mass
preconditioning [17]. The fermion masses for the preconditioner
were chosen to be 0.4 for heavier sea quark masses and 0.2 for
the two lightest ones (see later). We exploit the rational approxi-
mation a la Zolotarev for the sign function in (4) after projecting
out low-lying eigenmodes of HW (−m0). With the number of poles
in the rational function to be 8–10, the accuracy of O (10−(7−8)) is
achieved for the sign function. The simulations have been done
in two phases for each sea quark mass. In the first phase the
nested conjugate gradient (CG) is used to invert the overlap oper-
ator (4) (see [18,19] for details). On the other hand, in the second
phase we use the five-dimensional implementation of the over-
lap solver without the low-mode projection. The target accuracy of
O (10−(7−8)) is maintained by adding an additional Metropolis step
calculated with the nested CG [20].

For the sea quark mass mq we take six values: 0.015, 0.025,
0.035, 0.050, 0.070, and 0.100 that cover the mass range ms/6−ms
with ms the physical strange quark mass. After discarding 500 tra-

0.000138

-0.000

0

0.0001

matlab_s

-0.000114

0 5 10 15 20 25 30 35
−1

−0.5

0

0.5

1

1.5

2

2.5

3
x 10−11

sub-volume idea to explore

LatHC technology for 
visualizing topological density
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Kogut-Sinclair  EW phase transition 
Relevance in early cosmology (order of the phase transition?) 
LatHC is doing a new analysis using different methods 
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Early universe

• Nf=2   Qu=2/3 Qd = -1/3  sextet rep 
   udd neutral dark matter candidate

• dark matter candidate  sextet Nf=2 
   electroweak active in the application 

• 1/2 unit of electric charge (anomalies) 

• rather subtle sextet baryon                           
  construction (symmetric in color) 

• charged relics not expected?

Baryon in the
sextet gauge

model
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Constructing nucleon operator in continuum

Three SU(3) sextet fermions can give rise to a color singlet.
The tensor product 6⌦6⌦6 can be decomposed into
irreducible representations of SU(3) as,

6⌦6⌦6 = 1�2⇥8�10�10�3⇥27�28�2⇥35

where irreps are denoted by their dimensions and 10 is the
complex conjugate of 10.

Fermions in the 6-representation carry 2 indices, y
ab

, and
transform as

y
aa

0 �! U
ab

U
a

0
b

0 y
bb

0

and the singlet can be constructed explicitly as

e
abc

e
a

0
b

0
c

0 y
aa

0 y
bb

0 y
cc

0 .



the model is worth studying 
without resources  ➙ wrong results 
growing list we need to do: 

spectroscopy and S-parameter 

eta’ or second scalar? Or bust? 

EW phase transition 

baryon size  for better estimate of freeze-out  

F from RMT with imaginary chemical potential on links 

light scalar coupled to photons and weak bosons 
… 




